Let $(B,ω')$ be a symplectic Lie algebra. and the $\delta$ is a symplectic derivation, and $z\in B$.
The double extension of $B$ is: $g=ℝe ⊕ B ⊕ ℝd$ as:
Central Extension : $I = ℝe ⊕ B$,of $B$ with ℝe, and the bracket is : $[a, b]_I = [a, b]_B + ω'(δa, b)e$ pour $a, b ∈ B.$
Semi-direct Product : $I$ with $ℝd$, with the brackets : $[d, e] = 0,$ $[d, a] = −ω'(z, a)e − δ(a)$ for $ a ∈ B.$
My question is how we find the z?