Skip to main content
edited title
Link
J. W. Tanner
  • 64.6k
  • 5
  • 45
  • 89

Understanding the sympletcicsymplectic double extension

Source Link
Mary Maths
  • 313
  • 1
  • 12

Understanding the sympletcic double extension

Let $(B,ω')$ be a symplectic Lie algebra. and the $\delta$ is a symplectic derivation, and $z\in B$.

The double extension of $B$ is: $g=ℝe ⊕ B ⊕ ℝd$ as:

Central Extension : $I = ℝe ⊕ B$,of $B$ with ℝe, and the bracket is : $[a, b]_I = [a, b]_B + ω'(δa, b)e$ pour $a, b ∈ B.$

Semi-direct Product : $I$ with $ℝd$, with the brackets : $[d, e] = 0,$ $[d, a] = −ω'(z, a)e − δ(a)$ for $ a ∈ B.$

My question is how we find the z?