Skip to main content
edited tags
Link
Michael Rozenberg
  • 1
  • 32
  • 172
  • 295
Post Merged (destination) from math.stackexchange.com/questions/2308606/…
edited title
Source Link
Martin Sleziak
  • 56.5k
  • 20
  • 211
  • 391

Prove that $ xy$xy \leq\frac{x^p}{p} + \frac{y^q}{q}$

OK guys I have this problem  :

For $x,y,p,q>0$ and $ \frac {1} {p} + \frac {1}{q}=1 $ prove that $ xy \leq\frac{x^p}{p} + \frac{y^q}{q}$

It says I should use Jensen's inequality, but I can't figure out how to apply it in this case. Any ideas about the solution  ?

Prove that $ xy \leq\frac{x^p}{p} + \frac{y^q}{q}$

OK guys I have this problem  :

For $x,y,p,q>0$ and $ \frac {1} {p} + \frac {1}{q}=1 $ prove that $ xy \leq\frac{x^p}{p} + \frac{y^q}{q}$

It says I should use Jensen's inequality, but I can't figure out how to apply it in this case. Any ideas about the solution  ?

Prove that $xy \leq\frac{x^p}{p} + \frac{y^q}{q}$

OK guys I have this problem:

For $x,y,p,q>0$ and $ \frac {1} {p} + \frac {1}{q}=1 $ prove that $ xy \leq\frac{x^p}{p} + \frac{y^q}{q}$

It says I should use Jensen's inequality, but I can't figure out how to apply it in this case. Any ideas about the solution?

edited tags
Link
Martin Sleziak
  • 56.5k
  • 20
  • 211
  • 391
fix title
Link
robjohn
  • 355.6k
  • 39
  • 499
  • 894
Loading
edited body; edited title
Source Link
randomname
  • 1k
  • 2
  • 13
  • 25
Loading
edited body
Source Link
abnry
  • 15k
  • 2
  • 38
  • 79
Loading
Source Link
randomname
  • 1k
  • 2
  • 13
  • 25
Loading