Skip to main content
added 919 characters in body; added 233 characters in body
Source Link
Qiaochu Yuan
  • 477.3k
  • 55
  • 1.1k
  • 1.5k

A holomorphic function in an annulus containing the unit circle has a Laurent series about zero which generalizes the Taylor series of a holomorphic function in a neighborhood of zero. When restricted to the unit circle, this Laurent series gives a Fourier series of the corresponding periodic function. (This explains the connection between the Cauchy integral formula and the integral defining the coefficients of a Fourier series.)

But it's worth mentioning that the Fourier transform is much more general than this and applies in a broad range of contexts. I don't know that there's a short, simple answer to this question.

Edit: I guess it's also worth talking about intuition. One intuition for the Taylor series of a function $f(x)$ at at a point is that its coefficients describe the displacement, velocity, acceleration, jerk, and so forth of a particle which is at location $f(t)$ at time $t$. And one intuition for the Fourier series of a periodic function $f(x)$ is that it describes the decomposition of $f(x)$ into pure tones of various frequencies. In other words, a periodic function is like a chord, and its Fourier series describes the notes in that chord.

(The connection between the two provided by the Cauchy integral formula is therefore quite remarkable; one takes an integral of $f$ over the unit circle and it tells you information about the behavior of $f$ at the origin. But this is more a magic property of holomorphic functions than anything else. One intuition to have here is that a holomorphic function describes, for example, the flow of some ideal fluid, and integrating over the circle gives you information about "sources" and "sinks" of that flow within the circle.)

A holomorphic function in an annulus containing the unit circle has a Laurent series about zero which generalizes the Taylor series of a holomorphic function in a neighborhood of zero. When restricted to the unit circle, this Laurent series gives a Fourier series of the corresponding periodic function. (This explains the connection between the Cauchy integral formula and the integral defining the coefficients of a Fourier series.)

But it's worth mentioning that the Fourier transform is much more general than this and applies in a broad range of contexts. I don't know that there's a short, simple answer to this question.

A holomorphic function in an annulus containing the unit circle has a Laurent series about zero which generalizes the Taylor series of a holomorphic function in a neighborhood of zero. When restricted to the unit circle, this Laurent series gives a Fourier series of the corresponding periodic function. (This explains the connection between the Cauchy integral formula and the integral defining the coefficients of a Fourier series.)

But it's worth mentioning that the Fourier transform is much more general than this and applies in a broad range of contexts. I don't know that there's a short, simple answer to this question.

Edit: I guess it's also worth talking about intuition. One intuition for the Taylor series of a function $f(x)$ at at a point is that its coefficients describe the displacement, velocity, acceleration, jerk, and so forth of a particle which is at location $f(t)$ at time $t$. And one intuition for the Fourier series of a periodic function $f(x)$ is that it describes the decomposition of $f(x)$ into pure tones of various frequencies. In other words, a periodic function is like a chord, and its Fourier series describes the notes in that chord.

(The connection between the two provided by the Cauchy integral formula is therefore quite remarkable; one takes an integral of $f$ over the unit circle and it tells you information about the behavior of $f$ at the origin. But this is more a magic property of holomorphic functions than anything else. One intuition to have here is that a holomorphic function describes, for example, the flow of some ideal fluid, and integrating over the circle gives you information about "sources" and "sinks" of that flow within the circle.)

Source Link
Qiaochu Yuan
  • 477.3k
  • 55
  • 1.1k
  • 1.5k

A holomorphic function in an annulus containing the unit circle has a Laurent series about zero which generalizes the Taylor series of a holomorphic function in a neighborhood of zero. When restricted to the unit circle, this Laurent series gives a Fourier series of the corresponding periodic function. (This explains the connection between the Cauchy integral formula and the integral defining the coefficients of a Fourier series.)

But it's worth mentioning that the Fourier transform is much more general than this and applies in a broad range of contexts. I don't know that there's a short, simple answer to this question.