Skip to main content
added 54 characters in body
Source Link
Conifold
  • 12.2k
  • 3
  • 36
  • 64

This is an answer to the following question marked as duplicate which redirects here: "I've known for some time that infinitary numbers can be different in order, such as the integers (countable), and the real numbers (uncountable). I read that you can always find a higher order of infinity given any order of infinity. Since infinity is the limit of the natural numbers under the successor function, I would like to know if there is a similar concept for orders of infinity under taking power-sets, if there is a sort of "super-infinity", a limit to the orders of infinity."

Yes, there is such a concept: the smallest strongly inaccessible cardinal. Roughly, it is the smallest uncountable infinity that can not be reached by taking either unions or power sets of infinities under it, see here http://en.wikipedia.org/wiki/Limit_cardinal. Existence of such cardinals is widely believed to be independent of the standard axioms of set theory (ZFC), in other words it can neither be proved nor disproved from them. However, there are many works, where people postulate existence of strongly inaccessible cardinals and see what they can derive from it.

Of course, even with such a postulate you still don't get the "infinity of all infinities", such a concept is self-contradictory according to the Russel paradox, but the smallest strongly inaccessible cardinal is in a similar relation to the ones under it regarding power sets as the countable cardinal is regarding successors and unions.

This is an answer to the following question marked as duplicate which redirects here: "I've known for some time that infinitary numbers can be different in order, such as the integers (countable), and the real numbers (uncountable). I read that you can always find a higher order of infinity given any order of infinity. Since infinity is the limit of the natural numbers under the successor function, I would like to know if there is a similar concept for orders of infinity under taking power-sets, if there is a sort of "super-infinity", a limit to the orders of infinity."

Yes, there is such a concept: the smallest strongly inaccessible cardinal. Roughly, it is the smallest uncountable infinity that can not be reached by taking either unions or power sets of infinities under it. Existence of such cardinals is widely believed to be independent of the standard axioms of set theory (ZFC), in other words it can neither be proved nor disproved from them. However, there are many works, where people postulate existence of strongly inaccessible cardinals and see what they can derive from it.

Of course, even with such a postulate you still don't get the "infinity of all infinities", such a concept is self-contradictory according to the Russel paradox, but the smallest strongly inaccessible cardinal is in a similar relation to the ones under it regarding power sets as the countable cardinal is regarding successors and unions.

This is an answer to the following question marked as duplicate which redirects here: "I've known for some time that infinitary numbers can be different in order, such as the integers (countable), and the real numbers (uncountable). I read that you can always find a higher order of infinity given any order of infinity. Since infinity is the limit of the natural numbers under the successor function, I would like to know if there is a similar concept for orders of infinity under taking power-sets, if there is a sort of "super-infinity", a limit to the orders of infinity."

Yes, there is such a concept: the smallest strongly inaccessible cardinal. Roughly, it is the smallest uncountable infinity that can not be reached by taking either unions or power sets of infinities under it, see here http://en.wikipedia.org/wiki/Limit_cardinal. Existence of such cardinals is widely believed to be independent of the standard axioms of set theory (ZFC), in other words it can neither be proved nor disproved from them. However, there are many works, where people postulate existence of strongly inaccessible cardinals and see what they can derive from it.

Of course, even with such a postulate you still don't get the "infinity of all infinities", such a concept is self-contradictory according to the Russel paradox, but the smallest strongly inaccessible cardinal is in a similar relation to the ones under it regarding power sets as the countable cardinal is regarding successors and unions.

Source Link
Conifold
  • 12.2k
  • 3
  • 36
  • 64

This is an answer to the following question marked as duplicate which redirects here: "I've known for some time that infinitary numbers can be different in order, such as the integers (countable), and the real numbers (uncountable). I read that you can always find a higher order of infinity given any order of infinity. Since infinity is the limit of the natural numbers under the successor function, I would like to know if there is a similar concept for orders of infinity under taking power-sets, if there is a sort of "super-infinity", a limit to the orders of infinity."

Yes, there is such a concept: the smallest strongly inaccessible cardinal. Roughly, it is the smallest uncountable infinity that can not be reached by taking either unions or power sets of infinities under it. Existence of such cardinals is widely believed to be independent of the standard axioms of set theory (ZFC), in other words it can neither be proved nor disproved from them. However, there are many works, where people postulate existence of strongly inaccessible cardinals and see what they can derive from it.

Of course, even with such a postulate you still don't get the "infinity of all infinities", such a concept is self-contradictory according to the Russel paradox, but the smallest strongly inaccessible cardinal is in a similar relation to the ones under it regarding power sets as the countable cardinal is regarding successors and unions.