Let the random vector $(x,y)$ be uniformly distributed within the unit circle $B = \{ (x,y) : x^2 + y^2 \leq 1 \}$. Then the probability density function is
$$ f(x,y) = \begin{cases} \frac{1}{\pi} \quad &(x,y) \in B \\ 0 \quad &\text{otherwise} \end{cases}$$
Now, the marginal distributions are
$$\tilde{f}(x) = \int_{\mathbb{R}} f(x,y) \, dy = \frac{2}{\pi} \sqrt{1-x^2}$$
and similar for $\tilde{f}(y)$.
Question is:
Let $y = y_0 > 0$ be fixed. What is the probability distribution function for the random variables $x^4$, $|x|$ and $-x$?
Any ideas?
