The squircle is given by the equation $x^4+y^4=r^4$. Apparently, its circumference or arc length $c$ is given by
$$c=-\frac{\sqrt[4]{3} r G_{5,5}^{5,5}\left(1\left| \begin{array}{c} \frac{1}{3},\frac{2}{3},\frac{5}{6},1,\frac{4}{3} \\ \frac{1}{12},\frac{5}{12},\frac{7}{12},\frac{3}{4},\frac{13}{12} \\ \end{array} \right.\right)}{16 \sqrt{2} \pi ^{7/2} \Gamma \left(\frac{5}{4}\right)}$$
Where $G$ is the Meijer $G$ function. Where can I find the derivation of this result? Searching for any combination of squircle and arc length or circumference has led to nowhere.
