If $f$ is differentiable on $(a,\infty)$, Show that if $f'(x)\rightarrow L$ as $ x \rightarrow \infty$, $-\infty \leq L \leq \infty $ then $ f(x)/x \rightarrow L $ as $x \rightarrow \infty$.
Deduce further that if $f(x) \rightarrow M$ as $ x\rightarrow \infty$ , and $ f'(x)\rightarrow L $ as $ x \rightarrow\infty $ then $ L = 0$
For the first part I tried converting $f(x)$ to $F(\frac{1}{x})$ and $x \rightarrow 0$ and then using L'Hospital's rule but I am getting stuck. How do I proceed with this problem ?