Is my proof correct?
show: $(g\circ f)'(x_0)=g'(y_0)f'(x_0)$
Since $f'(x_0) = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$
and Since $g'(y_0) = \lim_{y\to y_0} \frac{g(y)-g(y_0)}{y-y_0}$
Multiply them to get: $$g'(y_0)f'(x_0) = \lim_{y\to y_0} \frac{g(y)-g(y_0)}{y-y_0} \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$
since $y=f(x)$ and $y_0 = f(x_0)$, we have: $$g'(f(x_0))f'(x_0) = \lim_{f(x)\to f(x_0)} \lim_{x\to x_0} \frac{g(f(x))-g(f(x_0))}{f(x)-f(x_0)} \frac{f(x)-f(x_0)}{x-x_0}$$
$$g'(f(x_0))f'(x_0) = \lim_{f(x)\to f(x_0)} \lim_{x\to x_0} \frac{g(f(x))-g(f(x_0))}{x-x_0}$$
$$g'(f(x_0))f'(x_0) = \lim_{f(x)\to f(x_0)} (g\circ f)'(x_0)$$
not sure how to get rid of that limit.
proof: (2nd try) To prove the chain rule, I use Newton's approximation.
We need to show that: $$\forall \epsilon >0\text{ }\exists \delta \text{ such that } |g(f(x))-g(f(x_0))-f'(x_0)g'(y_0)(x-x_0)-|\leq \epsilon |x-x_0| \text{ whenever }|x-x_0|\leq \delta\text{and} x\in X$$
Since $g(y)$ is differentiable at $y_0$, we Know: $$\forall \epsilon_1>0 \text{ }\exists \delta_1 \text{such that} |g(y)-g(y_0)-g'(y_0)(y-y_0)|\leq\epsilon_{1}|y-y_0| \text{ whenever }|y-y_0|\leq \delta_1\text{and} y\in Y$$ for $x\neq x_0$ choose $\delta_1 =f'(x_0)(x-x_0)$ and $\epsilon_1 = \frac{\epsilon }{f'(x_0)(x-x_0)} $
Proof (3rd try): $$RHS = lim_{y\to y_0,y\in Y-\{y_o\}}\frac{g(y)-g(y_0)}{y-y_0}lim_{x\to x_0,x\in X-\{x_o\}}\frac{f(x)-f(x_0)}{x-x_0}$$ $$RHS = lim_{y\to y_0,y\in Y-\{y_o\}}\frac{g(y)-g(y_0)}{y-y_0}lim_{x\to x_0,x\in X-\{x_o\}}\frac{y-y_0}{x-x_0}$$ $$RHS = lim_{y\to y_0,y\in Y-\{y_o\}}\frac{y-y_0}{y-y_0}lim_{x\to x_0,x\in X-\{x_o\}}\frac{g(f(x))-g(f(x_0))}{x-x_0}$$ $$RHS = lim_{x\to x_0,x\in X-\{x_o\}}\frac{g(f(x))-g(f(x_0))}{x-x_0}=LHS$$
Is this correct?