5
$\begingroup$

Let's say a zero-diagonal $4\times4$ symmetric matrix, $$ \begin{bmatrix} 0 & 1 & 3 & 3 \\ 1 & 0 & 3 & 3 \\ 3 & 3 & 0 & 1 \\ 3 & 3 & 1 & 0 \end{bmatrix} $$

Does anyone know how to obtain SVD from the above matrix mathematically? as $A = U W V^*$ Note: eigenvectors of $A^*A$ will make up $V$ with associate eigenvalues of the diagonal of $W^*W$. Similarly, $D^*D = U^*(WW^*)U$

Thank you very much!

$\endgroup$
3
  • $\begingroup$ Perhaps this is a somewhat related question. $\endgroup$ Commented Mar 27, 2012 at 15:16
  • $\begingroup$ Why do you want the singular value decomposition for an invertible, diagonalizable, square matrix? In any case, see Wikipedia. $\endgroup$ Commented Mar 27, 2012 at 19:58
  • $\begingroup$ Your question is unclear. Are you looking for a singular value decomposition for the matrix in your question, or SVDs for a general class of matrices? Are you looking for some numerical methods, or some theoretical methods that allow you to hand-calculate the SVDs? $\endgroup$ Commented Dec 20, 2017 at 15:17

1 Answer 1

3
$\begingroup$

The notation I'm used to using with singular value decomposition is $$A=U\Sigma V^T,$$ so pardon the different notation I'll use here. ($\Sigma$ is the matrix of singular values, like what I assume $W$ is in your question; everything else is the same, aside from the transpose, which I denote by $\ ^T$.)

We start any singular value decomposition by calculating $A^T A$, which in this case is equal to $A^2$, because $A$ is symmetrical. $$A^T A=A^2=\begin{bmatrix}0&1&3&3\\1&0&3&3\\3&3&0&1\\3&3&1&0\end{bmatrix}^2=\begin{bmatrix}19&18&6&6\\18&19&6&6\\6&6&19&18\\6&6&18&19\end{bmatrix}$$

We then find the eigenvalues and eigenvectors using the characteristic polynomial of $A^T A$, as follows: $$\det(A-\lambda I_4)=\begin{vmatrix}19-\lambda&18&6&6\\18&19-\lambda&6&6\\6&6&19-\lambda&18\\6&6&18&19-\lambda\end{vmatrix}=$$

(skipping some tedious algebra that, I'll be honest, I used a website for)

$$\begin{align}\lambda^4-76\lambda^3+1374\lambda^2-2524\lambda+1225&=0\\(\lambda-1)(\lambda-1)(\lambda-25)(\lambda-49)&=0\end{align}$$ $$\lambda_1=1,\;\lambda_2=1,\;\lambda_3=25,\,\lambda_4=49$$

Now that we have the eigenvalues of $A^T A$, we know $\Sigma$, since it's defined to be the same shape as $A$ and to have entries only on the diagonal, which are given by $\sigma_i=\sqrt{\lambda_i}$: $$\bbox[5px,border:2px solid red]{\Sigma=\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&5&0\\0&0&0&7\end{bmatrix}}$$

We can now begin to calculate $V$, whose columns will be orthonormal eigenvectors of $A^T A$. There are quite a lot of row operations to be performed here, for which I used the same website. You can refer to it to check their validity if you so desire. The first two columns of $V$, $\vec{v_1}$ and $\vec{v_2}$, will compose the null space of the matrix $A^T A-\lambda_1 I_4$. To find them, we solve the following system and normalize the resulting basis vectors: $$A^T A-\lambda_1 I_4=\vec{0}$$ $$\begin{bmatrix}18&18&6&6\\18&18&6&6\\6&6&18&18\\6&6&18&18\end{bmatrix}\vec{v}=\begin{bmatrix}0\\0\\0\\0\end{bmatrix}$$

The general solution of this system tells us that $$\text{span}\left(\text{null}\left(A^T A-\lambda_1 I_4\right)\right)=\left\{\begin{bmatrix}0\\0\\-1\\1\end{bmatrix},\begin{bmatrix}-1\\1\\0\\0\end{bmatrix}\right\}.$$

Therefore, the first two columns of $V$ are $$\vec{v_1}=\frac{1}{\sqrt{2}}\begin{bmatrix}0\\0\\-1\\1\end{bmatrix},\;\vec{v_2}=\frac{1}{\sqrt{2}}\begin{bmatrix}-1\\1\\0\\0\end{bmatrix}.$$

Similarly, the normalized basis vector of the null space of $A^T A-\lambda_3 I_4$ will be $\vec{v_3}$, and the normalized basis vector of the null space of $A^T A-\lambda_4 I_4$ will be $\vec{v_4}$. $$A^T A-\lambda_3 I_4=\vec{0}$$ $$\begin{bmatrix}-6&18&6&6\\18&-6&6&6\\6&6&-6&18\\6&6&18&-6\end{bmatrix}\vec{v}=\begin{bmatrix}0\\0\\0\\0\end{bmatrix}$$ $$\implies \vec{v_3}=\frac{1}{2}\begin{bmatrix}-1\\-1\\1\\1\end{bmatrix}$$ $$A^T A-\lambda_4 I_4=\vec{0}$$ $$\begin{bmatrix}-30&18&6&6\\18&-30&6&6\\6&6&-30&18\\6&6&18&-30\end{bmatrix}\vec{v}=\begin{bmatrix}0\\0\\0\\0\end{bmatrix}$$ $$\implies \vec{v_4}=\frac{1}{2}\begin{bmatrix}1\\1\\1\\1\end{bmatrix}$$

Pulling together the the columns of $V$, we find that $$V=\begin{bmatrix}0&-\frac{1}{\sqrt{2}}&-\frac{1}{2}&\frac{1}{2}\\0&\frac{1}{\sqrt{2}}&-\frac{1}{2}&\frac{1}{2}\\-\frac{1}{\sqrt{2}}&0&\frac{1}{2}&\frac{1}{2}\\\frac{1}{\sqrt{2}}&0&\frac{1}{2}&\frac{1}{2}\end{bmatrix}\implies \bbox[5px,border:2px solid red]{V^T=\begin{bmatrix}0&0&-\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0&0\\-\frac{1}{2}&-\frac{1}{2}&\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}&\frac{1}{2}&\frac{1}{2}\end{bmatrix}}$$

Finally, now that we know the columns of $V$, we can calculate the columns of $U$, which are given by $\vec{u_i}=\frac{A\vec{v_i}}{\sigma_i}$. $$\vec{u_1}=\left(\frac{1}{1}\right)\left(\frac{1}{\sqrt{2}}\right)\begin{bmatrix}0&1&3&3\\1&0&3&3\\3&3&0&1\\3&3&1&0\end{bmatrix}\begin{bmatrix}0\\0\\-1\\1\end{bmatrix}=\frac{1}{\sqrt{2}}\begin{bmatrix}0\\0\\1\\-1\end{bmatrix}$$ $$\vec{u_2}=\left(\frac{1}{1}\right)\left(\frac{1}{\sqrt{2}}\right)\begin{bmatrix}0&1&3&3\\1&0&3&3\\3&3&0&1\\3&3&1&0\end{bmatrix}\begin{bmatrix}-1\\1\\0\\0\end{bmatrix}=\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\\0\\0\end{bmatrix}$$ $$\vec{u_3}=\left(\frac{1}{5}\right)\left(\frac{1}{2}\right)\begin{bmatrix}0&1&3&3\\1&0&3&3\\3&3&0&1\\3&3&1&0\end{bmatrix}\begin{bmatrix}-1\\-1\\1\\1\end{bmatrix}=\frac{1}{10}\begin{bmatrix}5\\5\\-5\\-5\end{bmatrix}=\frac{1}{2}\begin{bmatrix}1\\1\\-1\\-1\end{bmatrix}$$ $$\vec{u_4}=\left(\frac{1}{7}\right)\left(\frac{1}{2}\right)\begin{bmatrix}0&1&3&3\\1&0&3&3\\3&3&0&1\\3&3&1&0\end{bmatrix}\begin{bmatrix}1\\1\\1\\1\end{bmatrix}=\frac{1}{14}\begin{bmatrix}7\\7\\7\\7\end{bmatrix}=\frac{1}{2}\begin{bmatrix}1\\1\\1\\1\end{bmatrix}$$ $$\implies \bbox[5px,border:2px solid red]{U=\begin{bmatrix}0&\frac{1}{\sqrt{2}}&\frac{1}{2}&\frac{1}{2}\\0&-\frac{1}{\sqrt{2}}&\frac{1}{2}&\frac{1}{2}\\\frac{1}{\sqrt{2}}&0&-\frac{1}{2}&\frac{1}{2}\\-\frac{1}{\sqrt{2}}&0&-\frac{1}{2}&\frac{1}{2}\end{bmatrix}}$$

After all that work, we have the singular value decomposition of $A$: $$A=U\Sigma V^T=\begin{bmatrix}0&\frac{1}{\sqrt{2}}&\frac{1}{2}&\frac{1}{2}\\0&-\frac{1}{\sqrt{2}}&\frac{1}{2}&\frac{1}{2}\\\frac{1}{\sqrt{2}}&0&-\frac{1}{2}&\frac{1}{2}\\-\frac{1}{\sqrt{2}}&0&-\frac{1}{2}&\frac{1}{2}\end{bmatrix} \begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&5&0\\0&0&0&7\end{bmatrix} \begin{bmatrix}0&0&-\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0&0\\-\frac{1}{2}&-\frac{1}{2}&\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}&\frac{1}{2}&\frac{1}{2}\end{bmatrix}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.