I want to compute the last ten digits of the billionth fibonacci number, but my notebook doesn't even have the power to calculate such big numbers, so I though of a very simple trick: The carry of addition is always going from a less significant digit to a more significant digit, so I could add up the fibonacci numbers within a boundary of 8 bytes ($0$ to $18\cdot10^{18}$) and neglect the more significant digits, because they won't change the less significant digits anymore.
So, instead of using $$F_{n+1}=F_n+F_{n-1}$$ to compute the whole number, I would use $$F_{n+1}=(F_n+F_{n-1})\operatorname{mod}18\cdot10^{18}$$ to be able to keep track of the last 10 digits.
Here my question: Can I do this?