1
$\begingroup$

I am trying to compute $Var(e_i)$.

So far I have

$Var(e_i)=Var(y_i-\hat y_i)=Var(y_i)+Var(\hat y_i)-2cov(y_i,\hat y_i)$

Now, I know that

$Cov(y_i,\hat y_i)=var(\hat y_i)$

but how do I prove this? (without using matrices)

But anyway, from there I have $Var(e_i)=var(y_i)-var(\hat y_i)= \sigma^2 -var(\overline y+\hat \beta_1 (x_i-\overline x))$

$=\sigma^2-var(\overline y)-(x_i-\overline x)^2var(\hat\beta_1) -2cov(\overline y,\hat \beta_1 )(x_i-\overline x)$

$\sigma^2-var(\sum y_i /n) - (x_i-\overline x)^2\sigma^2\sum(x_i-\overline x)^2$

$var(\sum y_i /n)=\sum(var(y_i))n^2 = \sigma ^2 / n$

So I end up with $Var(e_i)=\sigma^2(1-(1/n)-(x_i-\bar x)^2\sum (x_i-\overline x)^2)$

Is this correct?

$\endgroup$
1

1 Answer 1

1
$\begingroup$

The (Estimated) Variance of residuals in an OLS regression is simply: $$ Var(e)=\frac{e'e}{n-(k+1)} $$ where $k+1$ is the number of regressors (plus a constant).

$\endgroup$
1
  • $\begingroup$ Note the numerator is simply the squared sum of the residuals. $\endgroup$ Commented Nov 4, 2015 at 16:17

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.