Find the maximum area of a rectangle placed in a right angle triangle $\triangle ABC$.
My Work:
- Pythagoras: $$c^2=a^2+b^2$$
- Area of a triangle: $$\text{area triangle}=\frac{1}{2}\times\text{height triangle}\times\text{width triangle}=\frac{1}{2}\times a \times b$$
- Area of a rectangle: $$\text{area rectangle}=\text{height rectangle}\times\text{width rectangle}= h \times w$$
- And logically we know that: $$\text{area triangle}>\text{area rectangle}$$
Now, how to continue?

