1
$\begingroup$

Let $d \ge 2$ be an integer. Let $\left\{ m_j \right\}_{j=1}^d$ be strictly positive integers and $\left\{ b_j \right\}_{j=1}^d$ be parameters. Define the following quantity: \begin{equation} {\mathfrak F}_d(x) := \frac{1}{\prod\limits_{j=1}^d (x+b_j)^{m_j}} \end{equation} Below we decompose the quantity above into partial fractions for $d=3$ using differentiation with respect to the $b$-parameters. We have: \begin{eqnarray} &&{\mathfrak F}_d(x) = \\ &&\sum\limits_{\begin{array}{r}1 \le l_1 \le m_1 \\ l_1 \le l \le m_1 \end{array}} \binom{m_1+m_2-1-l}{m_2-1} \binom{l+m_3-1-l_1}{m_3-1} \frac{(-1)^{m_2+m_3}}{(x+b_1)^{l_1} (b_1-b_3)^{l+m_3-l_1} (b_1-b_2)^{m_1+m_2-l}} + \\ &&\sum\limits_{\begin{array}{r}1 \le l_1 \le m_2 \\ l_1 \le l \le m_2 \end{array}} \binom{m_1+m_2-1-l}{m_1-1} \binom{l+m_3-1-l_1}{m_3-1} \frac{(-1)^{m_1+m_3}}{(x+b_2)^{l_1} (b_2-b_3)^{l+m_3-l_1} (b_2-b_1)^{m_1+m_2-l}} + \\ &&\sum\limits_{\begin{array}{r}1 \le l_1 \le m_3 \\ l_1 \le l \le m_3 \end{array}} \binom{m_2+m_3-1-l}{m_2-1} \binom{l+m_1-1-l_1}{m_1-1} \frac{(-1)^{m_1+m_2}}{(x+b_3)^{l_1} (b_3-b_1)^{l+m_1-l_1} (b_3-b_2)^{m_2+m_3-l}} \end{eqnarray} Now the question is to provide the result for arbitrary $d$.

$\endgroup$
2
  • $\begingroup$ Just last week I was searching for a complete formal statement of this general decomposition for reference, But unfortunately the abundance of intro-calc level documents on the web make it difficult to search for more advanced treatments. Thank you for your question! $\endgroup$ Commented Mar 24, 2017 at 19:16
  • $\begingroup$ @David H: Thank you for the nice words. I was wondering what happens if one pair of the $b$-parameters turns out to be mutually complex conjugate(let us say $b_1=b e^{\imath \phi}$ and $b_2=b e^{-\imath \phi}$). In this case we know that the result is real and a different decomposition holds,i.e. into negative powers of $(x-b_3)$ and $(x^2-2 b \cos(\phi)+b^2)$. Can we retrieve the later decomposition from the result above? I was getting my head around that the whole morning and couldn't see that? Could you help me please? $\endgroup$ Commented Mar 27, 2017 at 17:51

1 Answer 1

1
$\begingroup$

The result is given below: \begin{eqnarray} &&{\mathfrak F}_d(x) = \sum\limits_{k=1}^d \sum\limits_{\begin{array}{rrr} 1&\le l_{d-2}& \le m_k \\l_{d-2}& \le l_{d-3} &\le m_k\\&\vdots&\\l_1&\le l_0&\le m_k\end{array}} \prod\limits_{j=-1}^{d-3} \binom{l_j + m_{f_{k,j}}-1-l_{j+1}}{m_{f_{k,j}}-1} \frac{1}{\left(b_k-b_{f_{k,j}}\right)^{l_j + m_{f_{k,j}}-l_{j+1}}} \cdot \frac{(-1)^{M-m_k}}{\left(x+b_k\right)^{l_{d-2}}} \end{eqnarray} subject to $l_{-1}= m_k$.

Here $f_{k,j} := (k-2-j) 1_{j\le k-3} + (j+3) 1_{j>k-3}$ and $M= \sum\limits_{j=1}^d m_j$.

As a sanity check we analyze special cases.

Firstly let us take $m_1=\cdots=m_d=1$ then all the $l$-indices are equal to one and we immediately get: \begin{equation} rhs = \sum\limits_{k=1}^d \prod\limits_{j=-1}^{d-3} \frac{1}{(b_k-b_{f_{k,j}})^1} \cdot \frac{(-1)^{d-1}}{(x+b_k)^1} \end{equation} as it should be.

Now let us take $m_1=\cdots=m_d=2$. In this cases there are two cases. (A) $l_{d-2}=2$ then $(l_{d-3},\cdots,l_0,l_{-1})=(2,\cdots,2)$ or (B) $l_{d-2}=1$ then $(l_{d-3},\cdots,l_0,l_{-1})=(1,\cdots,1,2,\cdots,2)$ where the number of one's can be zero but the number of two's has to be strictly positive. This yields: \begin{eqnarray} rhs&=& \sum\limits_{k=1}^d \prod\limits_{j=-1}^{d-3} \frac{1}{(b_k-b_{f_{k,j}})^2} \cdot \frac{(-1)^{2(d-1)}}{(x+b_k)^2} +\\ &&\sum\limits_{k=1}^d \prod\limits_{j=-1}^{d-3} \frac{1}{(b_k-b_{f_{k,j}})^2} \cdot \left\{\sum\limits_{j=-1}^{d-3} \frac{2}{b_k-b_{f_{k,j}})^1}\right\} \frac{(-1)^{2(d-1)}}{(x+b_k)^1} \end{eqnarray} as it should be.

Finally we take the case $m_1=\cdots=m_d=3$. Then there are three cases. (A) $l_{d-2}=3$ then $(l_{d-3},\cdots,l_0,l_{-1})=(3,\cdots,3)$ or (B) $l_{d-2}=2$ then $(l_{d-3},\cdots,l_0,l_{-1})=(2,\cdots,2,3,\cdots,3)$ or (C) $l_{d-2}=1$ then $(l_{d-3},\cdots,l_0,l_{-1})=(1,\cdots,1,2,\cdots,2,3,\cdots,3)$. In the last two cases the number of three's has to be strictly positive. This immediately gives: \begin{eqnarray} rhs&=& \sum\limits_{k=1}^d \prod\limits_{j=-1}^{d-3} \frac{1}{(b_k-b_{f_{k,j}})^3} \cdot \frac{(-1)^{3(d-1)}}{(x+b_k)^3} +\\ &&\sum\limits_{k=1}^d \prod\limits_{j=-1}^{d-3} \frac{1}{(b_k-b_{f_{k,j}})^3} \cdot \left\{\sum\limits_{j=-1}^{d-3} \frac{3}{b_k-b_{f_{k,j}})^1}\right\} \frac{(-1)^{3(d-1)}}{(x+b_k)^2}+\\ &&\sum\limits_{k=1}^d \prod\limits_{j=-1}^{d-3} \frac{1}{(b_k-b_{f_{k,j}})^3} \cdot \left\{ \sum\limits_{-1\le j_1<j_2\le d-3} \frac{3^2}{\prod\limits_{\xi=1}^2 (b_k-b_{f_{k,j_\xi}})^1}+ \sum\limits_{j=-1}^{d-3} \frac{6}{(b_k-b_{f_{k,j}})^2} \right\} \frac{(-1)^{3(d-1)}}{(x+b_k)^1} \end{eqnarray} again as it should be.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.