Ten years later (with Residue Calculus).
If $\gamma^R=\gamma_1^R\cup \gamma_2^R$ is the contour $$ \gamma_R^1(t)=t, \,\,\,t\in [-R,R], \quad \gamma_R^2(t)=R\mathrm{e}^{it}, \,\,\,t\in [0,\pi], $$ then $$ \int_{\gamma_R}\frac{dz}{(1+z^2)^n}=2\pi i\, \mathrm{Res}\bigg(\frac{1}{(1+z^2)^n},z=i\bigg). $$ But $$ \bigg|\int_{\gamma_R^2}\frac{dz}{(1+z^2)^n}\,\bigg|= \bigg|\int_0^\pi\frac{iR\mathrm{e}^{it}dt}{(1+\big(R\mathrm{e}^{it})\big)^n} \bigg|\le \int_0^\pi \frac{Rdt}{(R^2-1)^n}=\frac{\pi R}{R^2-1)^n}\to 0, $$ as $R\to\infty$, while $$ \lim_{R\to\infty}\int_{\gamma_R^1}\frac{dz}{(1+z^2)^n}=\int_{-\infty}^\infty\frac{dx}{(1+x^2)^n}. $$ Hence $\int_{-\infty}^\infty\frac{dx}{(1+x^2)^n}=2\pi i\, \mathrm{Res}\bigg(\frac{1}{(1+z^2)^n},z=i\bigg).$
We use the following fact.
Fact. If $f$ has a pole of order $m$ at $z=a$, then $$ \mathrm{Res}(f,a)=\frac{1}{(m-1)!} \left((z-a)^mf(z)\right)^{(m-1)}_{z=a} $$
This is straightforward since $$ f(z)=a_{-m}(z-a)^{-m}+\cdots+a_{-1}(z-a)^{-1}+a_0+a_{1}(z-a)^{1}+\cdots $$ and hence $$ (z-a)^mf(z)=a_m+a_{-m+1}(z-a)^{1}\cdots+a_{-1}(z-a)^{m-1}+a_0(z-a)^{m}+\cdots $$ and thus $$ \big((z-a)^mf(z)\big)^{(m-1)}=(m-1)!a_{-1}+m!a_0(z-a)^1+\cdots $$ and finally $\,\,\frac{1}{(m-1)!} \big((z-a)^mf(z)\big)^{(m-1)}_{z=a}=a_{-1}$.
In our case $f(z)=\frac{1}{(1+z^2)^n}$ has a pole of order $n$, and hence $$ \mathrm{Res}\bigg(\frac{1}{(1+z^2)^n},z=i\bigg)= \frac{1}{(n-1)!} \left( (z-i)^n \frac{1}{(1+z^2)^n} \right)^{(n-1)}_{z=i}=\frac{1}{(n-1)!} \left(\frac{1}{(z+i)^n} \right)^{(n-1)}_{z=i} \\ =\frac{1}{(n-1)!}\cdot (-1)^{n-1}\cdot n\cdot(n+1)\cdots(2n-2)\cdot \left(\frac{1}{(z+i)^{2n-1}}\right)_{z=i}\\ =(-1)^{n-1}\binom{2n-2}{n-1}\cdot\frac{1}{(2i)^{2n-1}}=\frac{-i}{2^{2n-1}}\binom{2n-2}{n-1} $$ Finally $$ \int_{-\infty}^\infty\frac{dx}{(1+x^2)^n}=2\pi i\, \mathrm{Res}\bigg(\frac{1}{(1+z^2)^n},z=i\bigg)=2\pi i\,\frac{-i}{2^{2n-1}}\binom{2n-2}{n-1}=\frac{\pi}{2^{2n-2}}\binom{2n-2}{n-1}. $$