4
$\begingroup$

Let $a_1,a_2,. . . ,a_n \in \mathbb{R^+} $. Prove that : $$\frac{ a_{1} }{ a_{2} ^{2}+ a_{3} ^{2}+\cdots+ a_{n} ^{2}} +\frac{ a_{2} }{ a_{1} ^{2}+ a_{3} ^{2}+\cdots+ a_{n} ^{2}} +\cdots+\frac{ a_{n} }{ a_{1} ^{2}+ a_{2} ^{2}+\cdots+ a_{n-1} ^{2}} \geq \frac{ 4}{ a_{1}+ a_{2} + a_{3}+\cdots+ a_{n}}$$


I do not know where to start. please help me .

$\endgroup$
5
  • 4
    $\begingroup$ Is the last fraction on the left-hand side supposed to be $\frac{ a_{n} }{ a_{1} ^{2}+ a_{2} ^{2}+\cdots+ a_{n-1} ^{2}}$? $\endgroup$ Commented Jul 17, 2017 at 11:04
  • $\begingroup$ prove this in the case $n=2$ $\endgroup$ Commented Jul 17, 2017 at 11:15
  • $\begingroup$ Induction on $n=2$ base case should work. $\endgroup$ Commented Jul 17, 2017 at 11:18
  • $\begingroup$ I have a proof for $n=3$ and $n=4$ $\endgroup$ Commented Jul 17, 2017 at 12:23
  • $\begingroup$ @MichaelRozenberg . please write . $\endgroup$ Commented Jul 17, 2017 at 12:29

2 Answers 2

2
$\begingroup$

I think we can start by C-S: $$\sum_{k=1}^n\frac{a_k}{\sum\limits_{i\neq k}a_i^2}=\sum_{k=1}^n\frac{a_k^2}{a_k\sum\limits_{i\neq k}a_i^2}\geq\frac{\left(\sum\limits_{k=1}a_k\right)^2}{\sum\limits_{k=1}^na_k\sum\limits_{i\neq k}a_i^2}.$$ Thus, it remains to prove that $$\left(\sum\limits_{k=1}a_k\right)^3\geq4\sum\limits_{k=1}^n\left(a_k\sum\limits_{i\neq k}a_i^2\right)$$ or $$\left(\sum\limits_{k=1}a_k\right)^3\geq4\sum\limits_{k=1}^n\left(a_k^2\sum\limits_{i\neq k}a_i\right).$$ Now, let $\sum\limits_{k=1}^na_k=1$.

Hence, we need to prove that $$\sum\limits_{k=1}^nf(a_k)\leq\frac{1}{4},$$ where $f(x)=x^2-x^3$.

But $f''(x)=2-6x$, which says that $f$ has an unique inflection point on $(0,1)$.

Thus, by Vasc's HCF Theorem it's enough to prove our inequality for

$a_1=a_2=...=a_{n-1}=x$ and $a_n=1-(n-1)x$, where $0<x<\frac{1}{n-1}$.

Thus, it's enough to prove that $g(x)\geq0,$ where $$g(x)=\frac{1}{4}-(n-1)(x^2-x^3)-(1-(n-1)x)^2+(1-(n-1)x)^3.$$ We have $$g'(x)=(n-1)(1-nx)(3(n-2)x-1).$$ We see that $0<\frac{1}{3(n-2)}<\frac{1}{n}<\frac{1}{n-1}$, $x_{min}=\frac{1}{3(n-2)}$ and $x_{max}=\frac{1}{n}$, which says $$g(x)\geq\min\left\{g\left(\frac{1}{3(n-2)}\right),g\left(\frac{1}{n-1}\right)\right\}=\min\left\{\frac{11n^2-56n+72}{108(n-2)^2},\frac{(n-3)^2}{4(n-1)^2}\right\}\geq0.$$ Done!

For the proof we can use also the Vasc's EV Method.

$\endgroup$
2
$\begingroup$

Notice that $$\left( \frac{a_1}{a_2^2 + a_3^2 + ... + a_n^2} + \frac{a_2}{a_1^2 + a_3^2 + ... + a_n^2} + \ ... \ \frac{a_n}{a_1^2 + a_2^2+... + a_{n-1}^2}\right)(a_1 + a_2 + ... + a_n) \ge \left( \sqrt{\frac{a_1^2}{a_2^2 + a_3^2 + ... + a_n^2}} + \sqrt{\frac{a_2^2}{a_1^2 + a_3^2 + ... + a_n^2}} + \ ... \ \sqrt{\frac{a_n^2}{a_1^2 + a_2^2... + a_{n-1}^2}}\right)^2$$ by Cauchy-Schwarz inequality. WLOG, take $a_1^2 + a_2^2 + ... + a_n^2 = 1$ (because of homogenity). Thus it remains to prove that $$\frac{a_1}{\sqrt{1-a_1^2}} + \frac{a_2}{\sqrt{1-a_2^2}}+ \ ... \ +\frac{a_n}{\sqrt{1-a_n^2}} \ge 2$$Now take $x_m = \frac{a_m}{\sqrt{1-a_m^2}} \ \forall \ 1 \le m \le n$. Then it remains to prove that $$x_1 + x_2 + ... + x_n \ge 2$$ Now since $a_m^2 =\frac{x_m^2}{1+x_m^2}$, we have $$\frac{x_1^2}{1+x_1^2} + \ ... \ + \frac{x_n^2}{1+x_n^2} = 1$$ But $\frac{x_m^2}{1+x_m^2} = x_m \left( \frac{x_m}{1+x_m^2} \right) \le x_m \left( \frac 12\right)$ since $x_m \ge 0$ and it follows that $$1 = x_1 \left( \frac{x_1}{1+x_1^2} \right) + ... + x_n \left( \frac{x_n}{1+x_n^2} \right) \le \frac{x_1}2 + ... + \frac{x_n}2 = \frac 12 \left(x_1 + ... + x_n \right)$$ i.e. $$x_1 + x_2 + ... + x_n \ge 2$$ Done.

Note that $2$ is the minimum attainable value of $$\frac{a_1}{\sqrt{1-a_1^2}} + \frac{a_2}{\sqrt{1-a_2^2}}+ \ ... \ +\frac{a_n}{\sqrt{1-a_n^2}} \ge 2$$ (take $a_1 = a_2 =\frac 1{\sqrt 2}$ and all other $a_i $s equal to $0$).

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.