Let $X_{(1)}\geq X_{(2)}\geq\cdots X_{(K)}$ be the order statistics of the random variables $X_1,\,X_2,\,\ldots,X_K$, which are independent and identically distributed exponential random variables with parameter 1.
Now let $Z_k=\frac{Y_k}{X_{(k)}}$, where $Y_1,\,Y_2,\,\ldots,Y_K$ are also independent and identically distributed exponential random variables with parameter 1.
I wish to find the cumulative distribution function (CDF) of $\max\limits_{k}\{Z_k\}$, which is given by
$$\text{Pr}\left[\max\limits_{k}Z_k\leq z\right]$$
How can I find the above CDF?
The problem is that $\{Z_k\}_{k=1}^K$ are not independent, because the denominator is an order statistics. I tried to condition on the denominator and then average as
$$\begin{split} &\underbrace{\int\int\cdots\int}_{K-\text{Fold}}\text{Pr}\left[\frac{Y_1}{\alpha_1}\leq z, \frac{Y_2}{\alpha_2}\leq z,\cdots, \frac{Y_K}{\alpha_K}\leq z\right]f_{X_{(1)}, X_{(2)}, \ldots, X_{(K)}}(\alpha_1, \alpha_2, \ldots, \alpha_K)\,d\alpha_1\cdots d\alpha_K\\ =& \underbrace{\int\int\cdots\int}_{K-\text{Fold}} \prod_{k=1}^K \text{Pr}\left[\frac{Y_k}{\alpha_k}\leq z\right]f_{X_{(1)}, X_{(2)}, \ldots, X_{(K)}}(\alpha_1, \alpha_2, \ldots, \alpha_K)\,d\alpha_1\cdots d\alpha_K \end{split}$$
but got stuck in evaluating it.
Thanks in advance for any tips.