2
$\begingroup$

Let $x_i,y_i \in \mathbb{R}$. Consider the following set of inequalities. \begin{align} x_1-x_2 &\leqslant y_1 \\ x_2-x_3 &\leqslant y_2 \\ &\vdots \\ x_{n-1}-x_n &\leqslant y_{n-1} \\ x_n-x_1 &\leqslant y_n \\ \end{align} If they are consistent, necessarily $\sum_{i=1}^n y_i \geqslant 0$.

Is that also a sufficient condition of feasibility?

$\endgroup$

1 Answer 1

4
$\begingroup$

Hint: consider $x_1=y_1+y_2+\ldots+y_n$, $x_2= y_2+\ldots+y_n$, $x_3= y_3+\ldots+y_n$, ... , $x_n = y_n$.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.