2
$\begingroup$

Let $E$, $F$ be two complex Hilbert spaces and $\mathcal{L}(E)$ (resp. $\mathcal{L}(F)$) be the algebra of all bounded linear operators on $E$ (resp. $F$).

The algebraic tensor product of $E$ and $F$ is given by $$E \otimes F:=\left\{\xi=\sum_{i=1}^dv_i\otimes w_i:\;d\in \mathbb{N}^*,\;\;v_i\in E,\;\;w_i\in F \right\}.$$

In $E \otimes F$, we define $$ \langle \xi,\eta\rangle=\sum_{i=1}^n\sum_{j=1}^m \langle x_i,z_j\rangle_1\langle y_i ,t_j\rangle_2, $$ for $\xi=\displaystyle\sum_{i=1}^nx_i\otimes y_i\in E \otimes F$ and $\eta=\displaystyle\sum_{j=1}^mz_j\otimes w_j\in E \otimes F$.

The above sesquilinear form is an inner product in $E \otimes F$.

It is well known that $(E \otimes F,\langle\cdot,\cdot\rangle)$ is not a complete space. Let $E \widehat{\otimes} F$ be the completion of $E \otimes F$ under the inner product $\langle\cdot,\cdot\rangle$.

If $T\in \mathcal{L}(E)$ and $S\in \mathcal{L}(F)$, then the tensor product of $T$ and $S$ is denoted $T\otimes S$ and defined as $$\big(T\otimes S\big)\bigg(\sum_{k=1}^d x_k\otimes y_k\bigg)=\sum_{k=1}^dTx_k \otimes Sy_k,\;\;\forall\,\sum_{k=1}^d x_k\otimes y_k\in E \otimes F,$$ which lies in $\mathcal{L}(E \otimes F)$. The extension of $T\otimes S$ over the Hilbert space $E \widehat{\otimes} F$, denoted by $T \widehat{\otimes} S$, is the tensor product of $T$ and $S$ on the tensor product space, which lies in $\mathcal{L}(E\widehat{\otimes}F)$.

Let $\operatorname{Im} X$ and $\overline{\operatorname{Im} X}$ denote respectively the range of an operator $X$ and the closure of its range.

Let $T,M\in \mathcal{L}(E)$ and $S,N\in \mathcal{L}(F)$. If $\operatorname{Im} (T)\subseteq \overline{\operatorname{Im} (M)}$ and $\operatorname{Im} S\subseteq\overline{\operatorname{Im} (N)}$. I want to show that $$\operatorname{Im}(T \widehat{\otimes} S)\subseteq \overline{\operatorname{Im}(M \widehat{\otimes} N)}.$$

Note that I show that $$\overline{\operatorname{Im} M}\otimes\overline{\operatorname{Im} N}\subseteq\overline{\operatorname{Im}(M \otimes N)}.$$

$\endgroup$

1 Answer 1

3
$\begingroup$

Firstly, it is immediate that $$\operatorname{Im}(T \otimes S) = \operatorname{Im}(T) \otimes \operatorname{Im}(S) \subseteq\overline{\operatorname{Im}(M)}\otimes \overline{\operatorname{Im}(N)} \subseteq \overline{\operatorname{Im}(M\otimes N)}$$ and so $\overline{\operatorname{Im}(T \otimes S)} \subseteq \overline{\operatorname{Im}(M\otimes N)}$

Now, $\operatorname{Im}(T \otimes S) = T \hat \otimes S (E \otimes F)$. But $T \hat \otimes S$ is a continuous map on $E \hat \otimes F$ and so $$T \hat \otimes S(E \hat \otimes F) = T \hat \otimes S( \overline{E \otimes F}) \subseteq \overline{T \hat \otimes S(E \otimes F)}.$$ Therefore $\operatorname{Im}(T \hat \otimes S) \subseteq \overline{\operatorname{Im}(T\otimes S)} \subseteq \overline{\operatorname{Im}(M\otimes N)}$

$\endgroup$
8
  • $\begingroup$ Thank you for your answer but I want to show that $$\operatorname{Im}(T \widehat{\otimes} S)\subseteq \overline{\operatorname{Im}(M \widehat{\otimes} N)}.$$ However you show that $$\operatorname{Im}(T \widehat{\otimes} S)\subseteq \overline{\operatorname{Im}(M \otimes N)}.$$ $\endgroup$ Commented Aug 6, 2018 at 11:01
  • $\begingroup$ @Student What I show is a stronger result. $M \hat \otimes N$ is an extension of $M \otimes N$ so obviously $\operatorname{Im}(M \otimes N) \subseteq \operatorname{Im}(M \hat \otimes N)$... $\endgroup$ Commented Aug 6, 2018 at 11:03
  • $\begingroup$ Could you please explain me why $$T \hat \otimes S(E \hat \otimes F) = T \hat \otimes S( \overline{E \otimes F}) ?$$ Thanks a lot. $\endgroup$ Commented Aug 6, 2018 at 12:42
  • $\begingroup$ @Student $E \hat \otimes F = \overline{E \otimes F}$ by definition of the completion (noting that the closure takes place in $E \hat \otimes F$). $\endgroup$ Commented Aug 6, 2018 at 12:44
  • $\begingroup$ Please my last question is: why $\operatorname{Im}(T \otimes S) = T \hat \otimes S (E \otimes F)$? Because by definition $$\operatorname{Im}(T \otimes S) = T \otimes S (E \otimes F).$$ Thanks a lot for your help. $\endgroup$ Commented Aug 7, 2018 at 10:58

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.