I have two series (1) $\sum \frac{x^n}{n^{\log n}}$ and (2) $\sum \frac{x^n}{n (\log n)^2}$. I need to find the radius of convergence for both the cases.
Attemp: (1) i know i have to find this limit i.e $$\lim_{n\to \infty}\left |\frac{a_{n+1}}{a_n} \right|=\lim_{n\to \infty}\frac{n^{\log n}}{(n+1)^{\log (n+1)}}=\lim_{n\to \infty}e^{\log^2 n-\log^2 (n+1)}\\=\lim_{n\to \infty} \left(1+ \mathcal{O}\left(\frac{1}{n}\right)\right) \to 1$$ So $R=1$ for this case.
(2) $$L=\lim_{n\to \infty}\left |\frac{a_{n+1}}{a_n} \right|=\lim_{n\to \infty}\left(\frac{n}{n+1}\right) e^{\log \log^2 n-\log \log^2 (n+1)}$$ How do i further simplify this limit ? Is my attempt correct or did i mess something up ? any suggestions are welcome !! These are exercise problems from Serge Lang's Undergraduate analysis, Chapter IX, exercise 6.