5
$\begingroup$

I have two series (1) $\sum \frac{x^n}{n^{\log n}}$ and (2) $\sum \frac{x^n}{n (\log n)^2}$. I need to find the radius of convergence for both the cases.

Attemp: (1) i know i have to find this limit i.e $$\lim_{n\to \infty}\left |\frac{a_{n+1}}{a_n} \right|=\lim_{n\to \infty}\frac{n^{\log n}}{(n+1)^{\log (n+1)}}=\lim_{n\to \infty}e^{\log^2 n-\log^2 (n+1)}\\=\lim_{n\to \infty} \left(1+ \mathcal{O}\left(\frac{1}{n}\right)\right) \to 1$$ So $R=1$ for this case.

(2) $$L=\lim_{n\to \infty}\left |\frac{a_{n+1}}{a_n} \right|=\lim_{n\to \infty}\left(\frac{n}{n+1}\right) e^{\log \log^2 n-\log \log^2 (n+1)}$$ How do i further simplify this limit ? Is my attempt correct or did i mess something up ? any suggestions are welcome !! These are exercise problems from Serge Lang's Undergraduate analysis, Chapter IX, exercise 6.

$\endgroup$

3 Answers 3

4
$\begingroup$

Since$$\lim_{n\to\infty}\frac{\frac1{(n+1)\log^2(n+1)}}{\frac1{n\log^2n}}=\lim_{n\to\infty}\frac n{n+1}\times\left(\frac{\log n}{\log(n+1)}\right)^2$$and since $\lim_{n\to\infty}\frac n{n+1}=\lim_{n\to\infty}\frac{\log n}{\log(n+1)}=1$, the radius of convergence of your series is equal to $1$. Note that $\log(n+1)=\log(n)+\log\left(\frac{n+1}n\right)$ and that $\lim_{n\to\infty}\log\left(\frac{n+1}n\right)=0$; it's easy to deduce from this that $\lim_{n\to\infty}\frac{\log n}{\log(n+1)}=1$ indeed.

$\endgroup$
2
  • $\begingroup$ What was i even doing? Thanks !! $\endgroup$ Commented Oct 22, 2019 at 8:37
  • 1
    $\begingroup$ I'm glad I could help. $\endgroup$ Commented Oct 22, 2019 at 8:38
2
$\begingroup$

$\lim\limits_{n \to \infty} \frac{n+1}{n} = 1$ and

$$\lim\limits_{n \to \infty}\frac{\ln(n+1)}{\ln n} = 1$$

So $$\lim\limits_{n \to \infty} \frac{(n+1)\ln^2(n+1)}{n \ln^2 n} = \left(\lim\limits_{n \to \infty} \frac{n+1}{n}\right) \left(\lim\limits_{n \to \infty} \frac{\ln(n+1)}{\ln n}\right)^2 = 1$$

proving that the convergence radius is equal to $1$.

$\endgroup$
2
$\begingroup$

I would use the $n$th root test:

First series: $$ \sqrt[n]{a_n}=\frac{1}{n^{\ln n/n}}=\exp\left(-\frac{(\ln n)^2}{n}\right)\to \exp(0)=1. $$ Hence, radius of convergence is equal to one.

Second series: $$ \sqrt[n]{a_n}=\frac{1}{\sqrt[n]{n(\ln n)^2}}=\exp\left(-\frac{\ln n+2\ln(\ln n)}{n}\right)\to \exp(0)=1. $$ Again, radius of convergence is equal to one.

$\endgroup$
1
  • $\begingroup$ +1, this looks more elegant. $\endgroup$ Commented Oct 22, 2019 at 8:38

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.