1
$\begingroup$

Given $\triangle ABC$ ($AC=AB$). $X$ - the point on side $AC$ such as $AX=BC$. $\angle A = 20^0$. Find $\angle XBC$.

enter image description here

Here is my attempt:

figure triangle

Let side $AB = a$, then side $BC = 2a \sin10^0$. Construct $B_1X \parallel BC$.

Similar triangles $\triangle BAC \sim \triangle B_1AX$ gives $B_1X=4a\sin^2 10^0$.

$XK \perp BC$. From $\triangle CXK$: $XK=XC\cdot \cos 10^0=(a-2a\sin 10^0)\cos10^0$.

$BK= \frac{B_1X+BC}{2}=2a\sin^2 10^0+a\sin 10^0$.

$\tan XBK = \frac{KX}{BK}= \frac{\cos 10^0(1-2\sin 10^0)}{\sin 10^0(1+2\sin 10^0)}= \cot 10^0 \cdot \frac{(1-2\sin 10^0)}{(1+2\sin 10^0)}$

Then I find perfect solution of this problems by @Seyed in this post Find $x$ angle in triangle.

That's why I have a question: is $\tan 70^0$ equal $\cot 10^0 \cdot \frac{(1-2\sin 10^0)}{(1+2\sin 10^0)}$ or I have a mistake in my attempt?

$\endgroup$

1 Answer 1

2
$\begingroup$

Let $Y\in CX$,$Z\in AB$ and $X'\in AY$ such that $BY=ZY=ZX'.$

Thus, $$\measuredangle ZX'Y=\measuredangle X'YZ=180^{\circ}-\measuredangle ZYB-\measuredangle BYC=180^{\circ}-60^{\circ}-80^{\circ}=40^{\circ},$$ which gives $$\measuredangle AZX'=\measuredangle ZX'Y-\measuredangle A=40^{\circ}-20^{\circ}=20^{\circ},$$ which says $$AX'=ZX'=BC,$$ which gives $$X'\equiv X.$$ Id est, $$\measuredangle XBC=\measuredangle ABC-\measuredangle XBZ=80^{\circ}-\frac{1}{2}\cdot20^{\circ}=70^{\circ}.$$

By the way, you are right: $$\tan70^{\circ}=\cot10^{\circ}\cdot\frac{1-2\sin10^{\circ}}{1+2\sin10^{\circ}}.$$ Indeed, $$\cot10^{\circ}\cdot\frac{1-2\sin10^{\circ}}{1+2\sin10^{\circ}}=\cot10^{\circ}\cdot\frac{\sin30^{\circ}-\sin10^{\circ}}{\sin30^{\circ}+\sin10^{\circ}}=$$ $$=\cot10^{\circ}\cdot\frac{2\sin10^{\circ}\cos20^{\circ}}{2\sin20^{\circ}\cos10^{\circ}}=\cot20^{\circ}=\tan70^{\circ}.$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.