0
$\begingroup$

$v =\left [ \begin{matrix} 1 \\ 2 \\ 3 \\ 4 \\ \end{matrix} \right ] $ $ A =\left [ \begin{matrix} 1 & 2 & 2 & 1\\ 2 & 1 & 1 & 2\\ \end{matrix} \right ] $ Find projection of $v$ onto $RowA$

$A$~$\left [ \begin{matrix} 1 & 2 & 2 & 1\\ 0 & 1 & 1 & 0\\ \end{matrix} \right ] $ So $basis$ of $RowA$ is {$\left [ \begin{matrix} 1 \\ 2 \\ 2 \\ 1 \\ \end{matrix} \right ] $ ,$\left [ \begin{matrix} 0 \\ 1 \\ 1 \\ 0 \\ \end{matrix} \right ] $}.
$U=RowA$
$Proj_uv=(v.u_1/u_1^2)u_1+(v.u_2/u_2^2)u_2=$ $\left [ \begin{matrix} 4 \\ 8 \\ 11.5 \\ 11.5 \\ \end{matrix} \right ] $ enter image description here But this is wrong, why? Also, I used projection matrix $A(A^TA)^{-1}A^T$ and got the correct answer $\left [ \begin{matrix} 5/2 \\ 5/2 \\ 5/2 \\ 5/2 \\ \end{matrix} \right ]$, but this is too complicated to use in exam.

$\endgroup$
1

1 Answer 1

1
$\begingroup$

Because the basis is not orthogonal. To use the formula, apply Gram-Schmidt process to find a orthogonal basis.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.