1
$\begingroup$

Given the generators $\sigma_1,\dots,\sigma_{n-1}$ that satisfy $\sigma _{i}^{2}=1$, $\sigma _{i}\sigma _{j}=\sigma _{j}\sigma _{i}$ for $|i-j|>1$, and $(\sigma _{i}\sigma _{i+1})^{3}=1$, prove that $(\sigma_1\sigma_2\cdots\sigma_{n})^{n+1} = 1$.

I am looking for a direct derivation of the order of the $n$-cycle from the properties of transpositions.

For example, for $n=1$ and $n=2$ the statement is found among the basic properties: $\sigma_1^2=1$ and $(\sigma_1\sigma_2)^3=1$.

For $n=3$, we can derive $\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}$ from the basic properties and then use it to show that

$$ (\sigma_1\sigma_2\sigma_3)^2=\sigma_2\sigma_1\sigma_3\sigma_2 $$

and then using $\sigma_i^2=1$ and commutativity of $\sigma_1$ and $\sigma_3$ we get

$$ (\sigma_1\sigma_2\sigma_3)^4=(\sigma_2\sigma_1\sigma_3\sigma_2)^2=\sigma_2\sigma_1\sigma_3\sigma_1\sigma_3\sigma_2= \sigma_2\sigma_1\sigma_1\sigma_3\sigma_3\sigma_2=1. $$

How to prove this for an arbitrary $n$?

$\endgroup$

1 Answer 1

0
$\begingroup$

Let's present the proof for the case $n=4$ in the form that will be amenable to generalization. Introducing a bit of notation,

$$ (i:j)=\sigma_i\sigma_{i+1}\cdots\sigma_j, $$

we can rewrite the desired identity as

$$ (1:4)^5 = 1 $$

We will prove this by computing the powers of $(1:4)$ consecutively as follows:

$$ \begin{align} (1:4)&=(1:3)\,\sigma_4\\ (1:4)^2&=(1:3)^2\sigma_4\sigma_3\\ (1:4)^3&=(1:3)^3\sigma_4\sigma_3\sigma_2\\ (1:4)^4&=(1:3)^4\sigma_4\sigma_3\sigma_2\sigma_1=(1:4)^{-1}\\ \end{align} $$

Note that in order to arrive at the last identity we used $(1:3)^4=1$ that was demonstrated in the formulation of the question.

Extending $(i:j)$ notation to the case $i>j$ as $$ (i:j)=\sigma_i\sigma_{i-1}\cdots\sigma_j, $$ we can generalize the equations for the powers of $(1:4)$ above to

\begin{equation}\tag{1}\label{rec} (1:n)^k = (1:n-1)^k(n:n-k+1) \end{equation}

which we will prove by induction. The base case, $k=1$ follows directly from the definitions:

$$ (1:n)=\sigma_1\cdots\sigma_{n-1}\sigma_n = (1:n-1)(n:n) $$

To prove the induction step, we assume that \eqref{rec} holds and will derive

\begin{equation}\tag{2}\label{rec2} (1:n)^{k+1} = (1:n-1)^{k+1}(n:n-k) \end{equation}

Indeed, starting with $$ (1:n)^{k+1} = (1:n)^k(1:n) $$

and using \eqref{rec}, we find

\begin{equation}\tag{3}\label{rec3} (1:n)^{k+1}=(1:n-1)^k(n:n-k+1)\,(1:n)=(1:n-1)^k(n:m)\,(1:n), \end{equation}

where $m=n-k+1$.

Since $\sigma_i$ commutes with $\sigma_j$ whenever $|i-j|>1$, $(1:m-2)$ part of $(1:n)$ commutes with $(n:m)$ and we can bring it to the left and rewrite \eqref{rec3} as

\begin{equation}\tag{4}\label{rec4} (1:n)^{k+1}=(1:n-1)^k(1:m-2)\,(n:m)\,(m-1:n). \end{equation} We will now focus on the last two multiplicands $$ (n:m)\,(m-1:n)=(n:m+1)\sigma_{m}\sigma_{m-1}\sigma_{m}(m+1:n) $$ where the product $\sigma_{m}\sigma_{m-1}\sigma_{m}$ in the middle can be rewritten as $\sigma_{m-1}\sigma_{m}\sigma_{m-1}$. Using commutativity of $\sigma_{m-1}$ with non-adjacent ranges

$$ \begin{align} (n:m)\,(m-1:n)&=(n:m+1)\sigma_{m-1}\sigma_{m}\sigma_{m-1}(m+1:n)\\ &=\sigma_{m-1}(n:m+1)\sigma_{m}(m+1:n)\,\sigma_{m-1}\\ &=\sigma_{m-1}(n:m+1)\,(m:n)\,\sigma_{m-1} \end{align} $$

Note that in the result the product sandwiched between the sigmas is the same as the original but with $m$ incremented by $1$. Therefore we can repeat the same transformation for increasing $m$ until $m=n-1$ and we get

$$ (n:n)\,(n-1:n)=\sigma_{n}\sigma_{n-1}\sigma_{n}=\sigma_{n-1}\sigma_{n}\sigma_{n-1} $$

Taking into account the sigmas that appear on both sides in every step we conclude that

$$ (n:m)\,(m+1:n)=(m-1:n-1)(n:m-1) $$ Finally, substituting the last identity in \eqref{rec4} $$ \begin{align} (1:n)^{k+1}&=(1:n-1)^k(1:m-2)\,(n:m)\,(m-1:n)\\ &=(1:n-1)^k(1:m-2)\,(m-1:n-1)\,(n:m-1)\\ &=(1:n-1)^{k+1}\,(n:m-1) \end{align} $$

we obtain \eqref{rec2}. Q.E.D.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.