Let
$$\zeta(n) = \frac{1}{1^n} + \frac{1}{2^n} + \frac{1}{3^n} + \frac{1}{4^n} + ... $$
Then
$$\frac{\zeta(n)}{2^{n-1}} = \frac{1}{1^n2^{n-1}} + \frac{1}{2^n2^{n-1}} + \frac{1}{3^n2^{n-1}} + \frac{1}{4^n2^{n-1}} + ...=\frac{2}{2^n} + \frac{2}{4^n} + \frac{2}{6^n} + \frac{2}{8^n} + ...$$
Hence
$$\zeta(n)-\frac{\zeta(n)}{2^{n-1}}=\frac{1}{1^n} - \frac{1}{2^n} + \frac{1}{3^n} - \frac{1}{4^n} + ... $$
and so
$$\zeta(n) = \frac{1}{1-\frac{1}{2^{n-1}}} \left(\frac{1}{1^n} - \frac{1}{2^n} + \frac{1}{3^n} - \frac{1}{4^n} + ...\right)$$
which has a larger convergence range compared to the original definition.
To evaluate each term,
$$\frac{1}{k^{a+ib}} $$
$$= \frac{1}{k^a} \frac{1}{k^{ib}}=\frac{1}{k^a}\frac{1}{e^{i(b \log k)}}= \frac{e^{-i(b \log k)}}{k^a}$$
$$=\frac{\cos(b \log k)}{k^a} - i\frac{\sin(b \log k)}{k^a}$$
which computes $\zeta(s)$ to any arbitrary degree of precision.
The closed circular integral
$$ \oint \frac{1}{\zeta(s)} ds \ne 0$$
$$\sum_{circle fragments} \frac{1}{\zeta(s)} \Delta s \ne 0$$
signals the presence of at least one zero within.
To compute the inverse of $\zeta(s)=a+ib$, observe that
$$\left(\frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}\right) \left(a+ib\right) = \left(\frac{a^2 + b^2}{a^2+b^2} - i\frac{ab-ab}{a^2+b^2}\right) = 1$$
and thus
$$\frac{1}{\zeta(s)} = \frac{1}{a+ib} = \left(\frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}\right) $$
The first 3 zeros of $\frac{1}{\zeta(s)}$ occur at
$$1/2 ± 14.135i$$ $$1/2 ± 21.022i$$ $$1/2 ± 25.011i$$
Analytic continuation of $\sum_{n=1}^\infty$ can be performed as follows:
Let
$$k_s = \int_0^\infty \frac{y^{s-1}}{e^y} dy$$
Since the integral clearly converges for any value of $s$, then $k_s$ is a certain finite number defined for any given $s$.
Parametrising $y$ by $nx$,
$$k_s = \int_0^\infty \frac{(nx)^{s-1}}{e^{nx}} (n dx)$$
$$= n^s \int_0^\infty \frac{x^{s-1}}{e^{nx}} dx$$
Therefore
$$\frac{1}{n^s} = \frac{1}{k_s}\int_0^\infty \frac{x^{s-1}}{e^{nx}}dx$$
and
$$\sum_{n=1}^\infty \frac{1}{n^s} = \sum_{n=1}^\infty \left(\frac{1}{k_s}\int_0^\infty \frac{x^{s-1}}{e^{nx}}dx\right)$$
$$= \frac{1}{k_s} \int_0^\infty x^{s-1} \left( \sum_{n=1}^\infty \frac{1}{e^{nx}}\right) dx$$
$$= \frac{1}{k_s} \int_0^\infty x^{s-1} \left( \frac{1}{e^x - 1}\right) dx$$
$$= \frac{1}{k_s} \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx$$
Since the integral $\int_0^\infty \frac{x^{s-1}}{e^x - 1} dx$ has a finite derivative over the entire complex plane and converges for all $s$ including $s \le 1$, by the uniqueness of analytic continuation theorem,
$$\sum_{n=1}^\infty \frac{1}{n^s} = \frac{1}{k_s} \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx$$
must be the uniquely correct analytic continuation of $\sum_{n=1}^\infty \frac{1}{n^s}$.
Computationally
$$k_s = \int_{0}^\infty \frac{y^{s-1}}{e^y} dy $$
$$\approx \sum_{y=0}^\infty \frac{y^{s-1}}{e^y} \Delta y $$
$$ k_{a+ib} = \sum_{y=0}^\infty \frac{y^{a + ib -1}}{e^y} \Delta y $$
$$ = \sum_{y=0}^\infty \frac{y^{a -1}}{e^y}e^{i(b\log y)} \Delta y $$
$$ = \sum_{y=0}^\infty \frac{y^{a -1}}{e^y}\left[ \cos(b\log y) + i \sin(b\log y) \right] \Delta y $$
$$ = \sum_{y=0}^\infty \frac{y^{(a-1)}\cos(b\log y)}{e^y}\Delta y+ i \sum_{y=0}^\infty \frac{y^{(a-1)}\sin(b\log y)}{e^y}\Delta y$$
and
$$\sum_{n=1}^\infty \frac{1}{n^s} = \frac{1}{k_s} \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx$$
$$\approx \frac{1}{k_s} \sum_{x=0}^\infty \frac{x^{s-1}}{e^x - 1} \Delta x$$
$$\sum_{n=1}^\infty \frac{1}{n^{a+ib}} = \frac{1}{k_{a+ib}} \left( \sum_{y=0}^\infty \frac{x^{(a-1)}\cos(b\log x)}{e^x - 1}\Delta y+ i \sum_{y=0}^\infty \frac{x^{(a-1)}\sin(b\log x)}{e^x - 1}\Delta y \right)$$
where the final complex valued division can be evaluated as
$$\sum_{n=1}^\infty \frac{1}{n^s} \approx \frac{a+ib}{c+id} = \frac{ac+bd}{c^2+d^2} + i \left(\frac{bc-ad}{c^2+d^2}\right)$$
and it can be calculated that e.g.
$$\sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6} \approx 1.645 + 0i$$
$$\sum_{n=1}^\infty \frac{1}{n^4} = \frac{\pi^4}{90} \approx 1.082 + 0i$$