4
$\begingroup$

Suppose $$A = \begin{pmatrix} 1+a_{1}+a_{1}b_{1}+b_{2} & 1+a_{1} & 1 & 0\\ a_{2}+a_{2}b_{1}+b_{3} & 1+a_{2} & 1 & 1\\ a_{3}+a_{3}b_{1} + b_{4} & a_{3} & 1 & 1\\ a_{4} + a_{4}b_{1} & a_{4} & 0 & 1\end{pmatrix}$$ Show that $$\det(A) = \det\begin{pmatrix} b_{1}-b_{2}+b_{4} & 1+a_{1}-a_{3}+a_{4}\\ -1-b_{2}+b_{3} & a_{1}-a_{2}+a_{4}\end{pmatrix}$$


I am not sure how to show this. I tried to perform some row and column operations but could simplify matrix $A$.

Note that for a general matrix of size $(3k+1)\times (3k+1)$, the determinant of $A$ can be written in a similar form. Say for a $7 \times 7$ matrix,

$$A_{7 \times 7} = \begin{pmatrix} 1+a_1+a_1b_1+b_2 & 1+a_1 & 1& 0 &0 &0 &0\\ a_2 + a_2b_1 + b_3 & 1+a_2 & 1 & 1&0&0&0\\ a_3+a_3b_1+b_4 & a_3 & 1 & 1 & 1& 0 &0\\ a_4+a_4b_1+b_5 & a_4 & 0 & 1 & 1&1 &0\\ a_5+a_5b_1+b_6 & a_5 & 0 & 0 & 1&1 &1\\ a_6+a_6b_1+b_7 & a_6 & 0 & 0 & 0&1 &1\\ a_7 + a_7b_1 & a_7 & 0 & 0 & 0&0 &1 \end{pmatrix}$$

$$\det(A) = \det\begin{pmatrix} b_{1}-b_{2}+b_{4}-b_{5}+b_{7} & 1+a_{1}-a_{3}+a_{4}-a_{6}+a_{7}\\ -1-b_{2}+b_{3}-b_{5}+b_{6} & a_{1}-a_{2}+a_{4}-a_{5}+a_{7}\end{pmatrix}$$

Any thoughts on how to show this in general?

$\endgroup$
7
  • 1
    $\begingroup$ Oh ok..I have written down the $7 \times 7$ matrix $A$, i see there is a pattern to it $\endgroup$ Commented Sep 10, 2022 at 8:56
  • $\begingroup$ Thanks for your quick reaction. It's clear now. $\endgroup$ Commented Sep 10, 2022 at 9:03
  • $\begingroup$ Remark: Subtracting column 2 to column 1 doesn't change the determinant and simplifies the matrix. $\endgroup$ Commented Sep 10, 2022 at 9:12
  • $\begingroup$ I wonder what argument can we use for a general matrix of size $3k+1 \times 3k+1$. I was thinking to use induction but which row and column to take in a general matrix? $\endgroup$ Commented Sep 10, 2022 at 9:33
  • 1
    $\begingroup$ Actually it is analysing the determinants of tridiagonal matrix, when columns are added later to it..it was an observation i saw.. see here: math.stackexchange.com/questions/4522806/… also observe tha tthe later right part of matrix is tridiagonal $\endgroup$ Commented Sep 10, 2022 at 10:23

3 Answers 3

4
$\begingroup$

First, for any integer $n\geq 1$ and any numbers $A_1,...,A_n,B_1,...,B_n$ we have $$ \det\left(I_n+\begin{pmatrix}A_1 & B_1 & 0 & \cdots &0 \\ A_2 & B_2 & 0 & \cdots &0 \\ \vdots & \vdots & \vdots & \ddots &\vdots \\ A_n & B_n & 0 & \cdots &0 \\\end{pmatrix}\right)=\det\begin{pmatrix}1+A_1 & B_1 \\ A_2 & 1+B_2\end{pmatrix}. $$

The determinant under consideration (for all $n$) is $$ \det(M+N)=\det M\cdot\det(I_n+M^{-1}N) $$ where $$ M=\begin{pmatrix} 1 & 1 & 1 & 0 & \cdots &\cdots\\ 0 & 1 & 1 & 1 & \cdots&\cdots \\ 0 & 0 & 1 & 1 & \cdots&\cdots \\ 0 & 0 & 0 & 1 & \cdots&\cdots \\ \vdots & \vdots& \vdots& \vdots& \ddots&\vdots\\ 0&0&0&0&\cdots&1\end{pmatrix},\quad N= \begin{pmatrix} a_1(1+b_1)+b_2 & a_1 & 0 & \cdots &0 \\ a_2(1+b_1)+b_3 & a_2 & 0 & \cdots &0\\ a_3(1+b_1)+b_4 & a_3 & 0 & \cdots &0\\ \vdots & \vdots & \vdots & \ddots &\vdots\\ a_n(1+b_1)+b_{n+1} & a_n & 0 & \cdots &0 \end{pmatrix} $$ We have $\det M=1$ and $M^{-1}$ is the matrix whose first row is $(1,-1,0,1,-1,0,1,-1,0,...)$ and the $(k+1)$th row is obtained from the first by adding $k$ zeros to the left and truncating it to the right: $$ M^{-1}=\begin{pmatrix} 1&-1&0&1&-1&0&\cdots\\ 0&1&-1&0&1&-1&\cdots\\ 0&0&1&-1&0&1&\cdots\\ 0&0&0&1&-1&0&\cdots\\ 0&0&0&0&1&-1&\cdots\\ 0&0&0&0&0&1&\cdots\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\ddots\\ 0&0&0&0&0&0&\cdots&1 \end{pmatrix} $$ By inspection, $M^{-1}N$ has the 3rd, 4th,... columns equal to the zero vector (as $N$ does so) and therefore we can apply the formula stated in the beginning to obtain $$ \det(M+N)=\det(I_n+M^{-1}N)=\det\begin{pmatrix}1+A_1 & B_1 \\ A_2 & 1+B_2\end{pmatrix} $$ with \begin{align} A_1&=\sum_{j=1}^n i_j(a_j(1+b_1)+b_{j+1}),& B_1&=\sum_{j=1}^n i_ja_j,\\ A_2&=\sum_{j=1}^n i_{j-1}(a_j(1+b_1)+b_{j+1}),& B_2&=\sum_{j=1}^n i_{j-1}a_j, \end{align} where we set $i_0:=0,i_1:=1,i_2:=-1$ and $i_{j+3k}:=i_j$ for all integers $k$. (To match the matrix in the original question, $b_{n+1}=0$, but the formula is valid for any value of $b_{n+1}$.)

Finally, the constraint on the remainder mod $3$ of the size is not necessary, the formula holds for all $n$.

$\endgroup$
9
  • $\begingroup$ Yes but the inverse of tridiagonal matrix doesnot exist if $n$ is of the form $3k-1$, see here: math.stackexchange.com/questions/4522806/… $\endgroup$ Commented Sep 10, 2022 at 10:58
  • $\begingroup$ there is no tridiagonal matrix involved here as far as I can tell $\endgroup$ Commented Sep 10, 2022 at 10:59
  • $\begingroup$ I can't see the relation with the link, the matrix involved in my answer is identity + strictly upper diagonal (and so, invertible, with explicit inverse) and it is not tridiagonal $\endgroup$ Commented Sep 10, 2022 at 16:06
  • $\begingroup$ Is the first equation of the answer obvious or is an important consequence of a theorem? $\endgroup$ Commented Sep 11, 2022 at 5:16
  • $\begingroup$ I think you can still simplify the 2 by 2 matrix at the last line..like $C_1 \rightarrow C_1 - (1+b_1) C_2$ $\endgroup$ Commented Sep 11, 2022 at 6:24
4
$\begingroup$

Remember that $\det$ is a multi linear functional and that if the columns of a matrix $A$ are linear dependent, then $\det A=0$. Hence

$$\det \begin{pmatrix} 1+a_{1}+a_{1}b_{1}+b_{2} & 1+a_{1} & 1 & 0\\ a_{2}+a_{2}b_{1}+b_{3} & 1+a_{2} & 1 & 1\\ a_{3}+a_{3}b_{1} + b_{4} & a_{3} & 1 & 1\\ a_{4} + a_{4}b_{1} & a_{4} & 0 & 1\end{pmatrix}=$$

$$=\det \begin{pmatrix} 1+a_{1}& 1+a_{1} & 1 & 0\\ 1+a_{2} & 1+a_{2} & 1 & 1\\ a_{3}& a_{3} & 1 & 1\\ a_{4} & a_{4} & 0 & 1\end{pmatrix}+\det \begin{pmatrix} a_{1}b_{1}+b_{2} & 1+a_{1} & 1 & 0\\ -1+a_2b_1+b_3 & 1+a_{2} & 1 & 1\\ a_{3}b_{1} + b_{4} & a_{3} & 1 & 1\\ a_{4}b_{1} & a_{4} & 0 & 1\end{pmatrix}=$$

$$=0+\det\begin{pmatrix} a_{1}b_{1}+b_{2} & 1+a_{1} & 1 & 0\\ -1+a_{2}b_{1}+b_{3} & 1+a_{2} & 1 & 1\\ a_{3}b_{1} + b_{4} & a_{3} & 1 & 1\\ a_{4}b_{1} & a_{4} & 0 & 1\end{pmatrix}=$$

$$=\det \begin{pmatrix} (1+a_{1})b_{1} & 1+a_{1} & 1 & 0\\ (1+a_{2})b_{1} & 1+a_{2} & 1 & 1\\ a_{3}b_{1} & a_{3} & 1 & 1\\ a_{4}b_{1} & a_{4} & 0 & 1\end{pmatrix}+\det\begin{pmatrix} -b_{1}+b_{2} & 1+a_{1} & 1 & 0\\ -1-b_{1}+b_{3} & 1+a_{2} & 1 & 1\\ b_{4} & a_{3} & 1 & 1\\ 0 & a_{4} & 0 & 1\end{pmatrix}$$

$$=0+\det\begin{pmatrix} b_{4}& 1+a_{1} & 1 & 0\\ b_4& 1+a_{2} & 1 & 1\\ b_{4} & a_{3} & 1 & 1\\ 0 & a_{4} & 0 & 1\end{pmatrix}+\det\begin{pmatrix} -b_{1}+b_{2} & -a_4& 1 & 0\\ -1-b_{1}+b_{3} & 0 & 1 & 1\\ b_{4} & 0 & 1 & 1\\ 0 & a_{4} & 0 & 1\end{pmatrix}+\det\begin{pmatrix} -b_{1}+b_{2}-b_4 & 1+a_{1}+a_4 & 1 & 0\\ -1-b_{1}+b_{3}-b_4 & 1+a_{2} & 1 & 1\\ 0 & a_{3}& 1 & 1\\ 0 & 0 & 0 & 1\end{pmatrix}=$$

$$=0+0+\det \begin{pmatrix} -b_{1}+b_{2}-b_4 & a_3 & 1 & 0\\ -1-b_{1}+b_{3}-b_4 & a_3 & 1 & 1\\ 0 & a_{3}& 1 & 1\\ 0 & 0& 0 & 1\end{pmatrix}+\det \begin{pmatrix} -b_{1}+b_{2}-b_4 & 1+a_{1}+a_4-a_3 & 1 & 0\\ -1-b_{1}+b_{3}-b_4 & 1+a_{2}-a_3 & 1 & 1\\ 0 & 0& 1 & 1\\ 0 & 0& 0 & 1\end{pmatrix}=$$

$$=\det \begin{pmatrix} -b_{1}+b_{2}-b_4 & 1+a_{1}+a_4-a_3 \\ -1-b_{1}+b_{3}-b_4 & 1+a_{2}-a_3 \\ \end{pmatrix}=$$

$$=0+\det \begin{pmatrix} -b_{1}+b_{2}-b_4 & 1+a_{1}+a_4-a_3 \\ -1-b_{1}+b_{3}-b_4-(-b_1+b_2-b_4) & 1+a_{2}-a_3-(1+a_1+a_4-a_3) \\ \end{pmatrix}=$$

$$= \det \begin{pmatrix} -b_{1}+b_{2}-b_4 & 1+a_{1}+a_4-a_3 \\ -1+b_{3}-b_2 & a_{2}-a_1-a_4 \\ \end{pmatrix}=$$

$$= \det \begin{pmatrix} b_{1}-b_{2}+b_4 & 1+a_{1}-a_3+a_4 \\ -1-b_2+b_3 & a_1-a_2+a_4 \\ \end{pmatrix}$$

$\endgroup$
1
1
$\begingroup$

When looking for transformations to come from \begin{align*} \det\begin{pmatrix} 1+a_{1}+a_{1}b_{1}+b_{2} & 1+a_{1} & 1 & 0\\ a_{2}+a_{2}b_{1}+b_{3} & 1+a_{2} & 1 & 1\\ a_{3}+a_{3}b_{1} + b_{4} & a_{3} & 1 & 1\\ a_{4} + a_{4}b_{1} & a_{4} & 0 & 1\end{pmatrix}\tag{1} \end{align*} to \begin{align*} \det\begin{pmatrix} b_{1}-b_{2}+b_{4} & 1+a_{1}-a_{3}+a_{4}\\ -1-b_{2}+b_{3} & a_{1}-a_{2}+a_{4}\end{pmatrix}\tag{2} \end{align*} we observe that we don't have any product $a_kb_1$ in (2).

  • So, it's plausible to first try to remove the products by subtracting from column $1$, $b_1$ times column $2$.

  • We can simplify column $1$ even more by additionally subtracting column $2$ from it.

  • And since it's often convenient to increase zero entries we also subtract column $4$ from column $3$.

We obtain from (1) \begin{align*} \color{blue}{\det}&\color{blue}{\begin{pmatrix} 1+a_{1}+a_{1}b_{1}+b_{2} & 1+a_{1} & 1 & 0\\ a_{2}+a_{2}b_{1}+b_{3} & 1+a_{2} & 1 & 1\\ a_{3}+a_{3}b_{1} + b_{4} & a_{3} & 1 & 1\\ a_{4} + a_{4}b_{1} & a_{4} & 0 & 1\end{pmatrix}}\\\\ &\qquad\qquad\qquad C_1\leftarrow C_1-C_2-b_1C_2\\ &\qquad\qquad\qquad C_3\leftarrow C_3-C_4\\\\ &=\det\begin{pmatrix} -b_1+b_2 & 1+a_{1} & 1 & 0\\ -1-b_1+b_3 & 1+a_{2} & 0 & 1\\ b_{4} & a_{3} & 0 & 1\\ 0 & a_{4} & -1 & 1\end{pmatrix}\\\\ &\qquad\qquad\qquad C_2\leftarrow C_2+a_4C_3\\ &\qquad\qquad\qquad C_4\leftarrow C_4+C_3\\\\ &=\det\begin{pmatrix} -b_1+b_2 & 1+a_{1}+a_4 & 1 & 1\\ -1-b_1+b_3 & 1+a_{2} & 0 & 1\\ b_{4} & a_{3} & 0 & 1\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{-1} & \color{blue}{0}\end{pmatrix}\\ &=\det\begin{pmatrix} -b_1+b_2 & 1+a_{1}+a_4 & 1\\ -1-b_1+b_3 & 1+a_{2} & 1\\ b_{4} & a_{3} & 1\end{pmatrix}\\\\ &\qquad\qquad\qquad R_1\leftarrow R_1-b_4R_3\\ &\qquad\qquad\qquad R_2\leftarrow R_2-a_3R_3\\\\ &=\det\begin{pmatrix} -b_1+b_2 -b_4& 1+a_{1}+a_4-a_3&1\\ -1-b_1+b_3-b_4 & 1+a_{2}-a_3&1\\\color{blue}{0}&\color{blue}{0}&\color{blue}{1}\end{pmatrix}\\ &=\det\begin{pmatrix} -b_1+b_2 -b_4& 1+a_{1}+a_4-a_3\\ -1-b_1+b_3-b_4 & 1+a_{2}-a_3\end{pmatrix}\\\\ &\qquad\qquad\qquad R_2\leftarrow R_2-R_1\\\\ &=\det\begin{pmatrix} -b_1+b_2 -b_4& 1+a_{1}+a_4-a_3\\ -1-b_2+b_3& -a_1+a_{2}-a_4\end{pmatrix}\\ &=\color{blue}{\det\begin{pmatrix} b_1-b_2 +b_4& 1+a_{1}-a_3+a_4\\ -1-b_2+b_3& a_1-a_{2}+a_4\end{pmatrix}}\\ \end{align*} and the claim (2) follows.

$\endgroup$
1

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.