Remember that $\det$ is a multi linear functional and that if the columns of a matrix $A$ are linear dependent, then $\det A=0$. Hence
$$\det \begin{pmatrix} 1+a_{1}+a_{1}b_{1}+b_{2} & 1+a_{1} & 1 & 0\\ a_{2}+a_{2}b_{1}+b_{3} & 1+a_{2} & 1 & 1\\ a_{3}+a_{3}b_{1} + b_{4} & a_{3} & 1 & 1\\ a_{4} + a_{4}b_{1} & a_{4} & 0 & 1\end{pmatrix}=$$
$$=\det \begin{pmatrix} 1+a_{1}& 1+a_{1} & 1 & 0\\ 1+a_{2} & 1+a_{2} & 1 & 1\\ a_{3}& a_{3} & 1 & 1\\ a_{4} & a_{4} & 0 & 1\end{pmatrix}+\det \begin{pmatrix} a_{1}b_{1}+b_{2} & 1+a_{1} & 1 & 0\\ -1+a_2b_1+b_3 & 1+a_{2} & 1 & 1\\ a_{3}b_{1} + b_{4} & a_{3} & 1 & 1\\ a_{4}b_{1} & a_{4} & 0 & 1\end{pmatrix}=$$
$$=0+\det\begin{pmatrix} a_{1}b_{1}+b_{2} & 1+a_{1} & 1 & 0\\ -1+a_{2}b_{1}+b_{3} & 1+a_{2} & 1 & 1\\ a_{3}b_{1} + b_{4} & a_{3} & 1 & 1\\ a_{4}b_{1} & a_{4} & 0 & 1\end{pmatrix}=$$
$$=\det \begin{pmatrix} (1+a_{1})b_{1} & 1+a_{1} & 1 & 0\\ (1+a_{2})b_{1} & 1+a_{2} & 1 & 1\\ a_{3}b_{1} & a_{3} & 1 & 1\\ a_{4}b_{1} & a_{4} & 0 & 1\end{pmatrix}+\det\begin{pmatrix} -b_{1}+b_{2} & 1+a_{1} & 1 & 0\\ -1-b_{1}+b_{3} & 1+a_{2} & 1 & 1\\ b_{4} & a_{3} & 1 & 1\\ 0 & a_{4} & 0 & 1\end{pmatrix}$$
$$=0+\det\begin{pmatrix} b_{4}& 1+a_{1} & 1 & 0\\ b_4& 1+a_{2} & 1 & 1\\ b_{4} & a_{3} & 1 & 1\\ 0 & a_{4} & 0 & 1\end{pmatrix}+\det\begin{pmatrix} -b_{1}+b_{2} & -a_4& 1 & 0\\ -1-b_{1}+b_{3} & 0 & 1 & 1\\ b_{4} & 0 & 1 & 1\\ 0 & a_{4} & 0 & 1\end{pmatrix}+\det\begin{pmatrix} -b_{1}+b_{2}-b_4 & 1+a_{1}+a_4 & 1 & 0\\ -1-b_{1}+b_{3}-b_4 & 1+a_{2} & 1 & 1\\ 0 & a_{3}& 1 & 1\\ 0 & 0 & 0 & 1\end{pmatrix}=$$
$$=0+0+\det \begin{pmatrix} -b_{1}+b_{2}-b_4 & a_3 & 1 & 0\\ -1-b_{1}+b_{3}-b_4 & a_3 & 1 & 1\\ 0 & a_{3}& 1 & 1\\ 0 & 0& 0 & 1\end{pmatrix}+\det \begin{pmatrix} -b_{1}+b_{2}-b_4 & 1+a_{1}+a_4-a_3 & 1 & 0\\ -1-b_{1}+b_{3}-b_4 & 1+a_{2}-a_3 & 1 & 1\\ 0 & 0& 1 & 1\\ 0 & 0& 0 & 1\end{pmatrix}=$$
$$=\det \begin{pmatrix} -b_{1}+b_{2}-b_4 & 1+a_{1}+a_4-a_3 \\ -1-b_{1}+b_{3}-b_4 & 1+a_{2}-a_3 \\ \end{pmatrix}=$$
$$=0+\det \begin{pmatrix} -b_{1}+b_{2}-b_4 & 1+a_{1}+a_4-a_3 \\ -1-b_{1}+b_{3}-b_4-(-b_1+b_2-b_4) & 1+a_{2}-a_3-(1+a_1+a_4-a_3) \\ \end{pmatrix}=$$
$$= \det \begin{pmatrix} -b_{1}+b_{2}-b_4 & 1+a_{1}+a_4-a_3 \\ -1+b_{3}-b_2 & a_{2}-a_1-a_4 \\ \end{pmatrix}=$$
$$= \det \begin{pmatrix} b_{1}-b_{2}+b_4 & 1+a_{1}-a_3+a_4 \\ -1-b_2+b_3 & a_1-a_2+a_4 \\ \end{pmatrix}$$