If $A = \begin{bmatrix} x & 1\\ y & 0\end{bmatrix}, B = \begin{bmatrix} z & 1\\ w & 0\end{bmatrix}$, for $x,y,z,w \in \Bbb{R}$.
I have observed by considering many examples of $x,y,z,w$ that:
If all the eigen values of $A^2B$ and $AB^2$ are less than one in absolute value $\implies$ $\det(AB+A+I)<0$ and $\det(BA+B+I)<0$ is not possible.
Any way how to prove it actually?
I am thinking if $\det(AB+A+I)<0$ and $\det(BA+B+I)<0$, then perhaps it would violate certain assumptions on the eigenvalues of $A^2B, AB^2$?
Explicit forms of matrices:
$A^2B = \begin{bmatrix} z(x^2+y)+xw & x^2+y\\ xyz+wy & xy\end{bmatrix}$
$AB^2 = \begin{bmatrix} x(w+z^2)+wz & xz+w\\ y(z^2+w) & yz\end{bmatrix}$
$AB +A+I = \begin{bmatrix} xz+w+x+1& x+1\\ yz+y & y+1\end{bmatrix}$
$BA+B+I = \begin{bmatrix} xz+y+z+1 & z+1\\ xw+w & w+1\end{bmatrix}$