90
$\begingroup$

I found the following formula

$$\sum_{n=1}^\infty \frac{H_n}{n^q}= \left(1+\frac{q}{2} \right)\zeta(q+1)-\frac{1}{2}\sum_{k=1}^{q-2}\zeta(k+1)\zeta(q-k)$$

and it is cited that Euler proved the formula above , but how ?

Do there exist other proofs ?

Can we have a general formula for the alternating form

$$\sum_{n=1}^\infty (-1)^{n+1}\frac{H_n}{n^q}$$

$\endgroup$
2
  • $\begingroup$ (at)Zaid Alyafeai The community here might be interested in my solution attempt for the alternating form. $\endgroup$ Commented Sep 29, 2017 at 22:32
  • $\begingroup$ The post is rather old but interesting of course! Do you have the source where Euler is mentioned as the person proving it? And where can one see this result - I mean where did you find this? Thank you :-) $\endgroup$ Commented Dec 7, 2018 at 16:57

9 Answers 9

64
$\begingroup$

$$ \begin{align} &\sum_{j=0}^k\zeta(k+2-j)\zeta(j+2)\\ &=\sum_{m=1}^\infty\sum_{n=1}^\infty\sum_{j=0}^k\frac1{m^{k+2-j}n^{j+2}}\tag{1}\\ &=(k+1)\zeta(k+4) +\sum_{\substack{m,n=1\\m\ne n}}^\infty\frac1{m^2n^2} \frac{\frac1{m^{k+1}}-\frac1{n^{k+1}}}{\frac1m-\frac1n}\tag{2}\\ &=(k+1)\zeta(k+4) +\sum_{\substack{m,n=1\\m\ne n}}^\infty\frac1{nm^{k+2}(n-m)}-\frac1{mn^{k+2}(n-m)}\tag{3}\\ &=(k+1)\zeta(k+4) +2\sum_{m=1}^\infty\sum_{n=m+1}^\infty\frac1{nm^{k+2}(n-m)}-\frac1{mn^{k+2}(n-m)}\tag{4}\\ &=(k+1)\zeta(k+4) +2\sum_{m=1}^\infty\sum_{n=1}^\infty\frac1{(n+m)m^{k+2}n}-\frac1{m(n+m)^{k+2}n}\tag{5}\\ &=(k+1)\zeta(k+4)\\ &+2\sum_{m=1}^\infty\sum_{n=1}^\infty\frac1{m^{k+3}n}-\frac1{(m+n)m^{k+3}}\\ &-2\sum_{m=1}^\infty\sum_{n=1}^\infty\frac1{m(n+m)^{k+3}}+\frac1{n(n+m)^{k+3}}\tag{6}\\ &=(k+1)\zeta(k+4) +2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}} -4\sum_{n=1}^\infty\sum_{m=1}^\infty\frac1{n(n+m)^{k+3}}\tag{7}\\ &=(k+1)\zeta(k+4) +2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}} -4\sum_{n=1}^\infty\sum_{m=n+1}^\infty\frac1{nm^{k+3}}\tag{8}\\ &=(k+1)\zeta(k+4) +2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}} -4\sum_{n=1}^\infty\sum_{m=n}^\infty\frac1{nm^{k+3}}+4\zeta(k+4)\tag{9}\\ &=(k+5)\zeta(k+4) +2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}} -4\sum_{m=1}^\infty\sum_{n=1}^m\frac1{nm^{k+3}}\tag{10}\\ &=(k+5)\zeta(k+4) +2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}} -4\sum_{m=1}^\infty\frac{H_m}{m^{k+3}}\tag{11}\\ &=(k+5)\zeta(k+4) -2\sum_{m=1}^\infty\frac{H_m}{m^{k+3}}\tag{12} \end{align} $$ Letting $q=k+3$ and reindexing $j\mapsto j-1$ yields $$ \sum_{j=1}^{q-2}\zeta(q-j)\zeta(j+1) =(q+2)\zeta(q+1)-2\sum_{m=1}^\infty\frac{H_m}{m^q}\tag{13} $$ and finally $$ \sum_{m=1}^\infty\frac{H_m}{m^q} =\frac{q+2}{2}\zeta(q+1)-\frac12\sum_{j=1}^{q-2}\zeta(q-j)\zeta(j+1)\tag{14} $$


Explanation

$\hphantom{0}(1)$ expand $\zeta$
$\hphantom{0}(2)$ pull out the terms for $m=n$ and use the formula for finite geometric sums on the rest
$\hphantom{0}(3)$ simplify terms
$\hphantom{0}(4)$ utilize the symmetry of $\frac1{nm^{k+2}(n-m)}+\frac1{mn^{k+2}(m-n)}$
$\hphantom{0}(5)$ $n\mapsto n+m$ and change the order of summation
$\hphantom{0}(6)$ $\frac1{mn}=\frac1{m(m+n)}+\frac1{n(m+n)}$
$\hphantom{0}(7)$ $H_m=\sum_{n=1}^\infty\frac1n-\frac1{n+m}$ and use the symmetry of $\frac1{m(n+m)^{k+3}}+\frac1{n(n+m)^{k+3}}$
$\hphantom{0}(8)$ $m\mapsto m-n$
$\hphantom{0}(9)$ subtract and add the terms for $m=n$
$(10)$ combine $\zeta(k+4)$ and change the order of summation
$(11)$ $H_m=\sum_{n=1}^m\frac1n$
$(12)$ combine sums

$\endgroup$
4
  • 5
    $\begingroup$ This works for any integer $q\ge2$. $\endgroup$ Commented Aug 18, 2013 at 16:03
  • $\begingroup$ Your answer is Euler's original proof? Can we start with $\sum_{j=1}^{k-2}\zeta(k-j)\zeta(j+1)$ at the first line? $\endgroup$ Commented Dec 15, 2013 at 11:11
  • 2
    $\begingroup$ @ALGEAN: I don't know how Euler did it, so I can't answer your first question. I don't see why you couldn't start with that as the first line. $\endgroup$ Commented Dec 15, 2013 at 11:31
  • $\begingroup$ @robjohn The community here might be interested in my solution attempt for the alternating form. $\endgroup$ Commented Sep 29, 2017 at 22:30
33
$\begingroup$

Answering the first part of the question for $q$ odd we recall from the following MSE post the identity: $$ H_n = - \frac{1}{2\pi i} \int_{-1/2-i\infty}^{-1/2+i\infty} \zeta(1-s) \frac{\pi}{\sin(\pi s)}\frac{1}{n^s} ds.$$ The proof at the above cited post is sound and I will merely refer to it here since otherwise we would just include it verbatim.

This gives the formula for your sum: $$\sum_{n\ge 1} \frac{H_n}{n^q} = - \frac{1}{2\pi i} \int_{-1/2-i\infty}^{-1/2+i\infty} \zeta(1-s) \frac{\pi}{\sin(\pi s)} \zeta(q+s) ds.$$

Now shift this integral to the left to the line $\Re(s) = -1/2-(q-1),$ getting $$\sum_{n\ge 1} \frac{H_n}{n^q} = \rho_1 - \sum_{k=1}^{q-2} \zeta(1+k) (-1)^k \zeta(q-k) - \frac{1}{2\pi i} \int_{-1/2-(q-1)-i\infty}^{-1/2-(q-1)+i\infty} \zeta(1-s) \frac{\pi}{\sin(\pi s)} \zeta(q+s) ds$$ where $$\rho_1 = \operatorname{Res}\left( -\zeta(1-s) \frac{\pi}{\sin(\pi s)} \zeta(q+s); s=-(q-1)\right).$$

Make the substitution $t=s+(q-1)$ in the integral to get (not including the minus sign in front) $$ \frac{1}{2\pi i}\int_{-1/2-i\infty}^{-1/2+i\infty} \zeta(1-(t-(q-1))) \frac{\pi}{\sin(\pi (t-(q-1))} \zeta(q+t-(q-1)) dt.$$ For $q$ odd this simplifies to $$ \frac{1}{2\pi i}\int_{-1/2-i\infty}^{-1/2+i\infty} \zeta(q-t) \frac{\pi}{\sin(\pi t)} \zeta(t+1) dt.$$ Now make another substitution, namely $v=-t$, to get $$ \frac{1}{2\pi i}\int_{1/2+i\infty}^{1/2-i\infty} \zeta(q+v) \frac{\pi}{\sin(\pi v)} \zeta(1-v) dv =-\frac{1}{2\pi i}\int_{1/2-i\infty}^{1/2+i\infty} \zeta(q+v) \frac{\pi}{\sin(\pi v)} \zeta(1-v) dv$$ where the minus on the sine term cancels the one on the differential. Finally shift this integral to the line $\Re(v) = -1/2$ to obtain $$\rho_2 - \frac{1}{2\pi i}\int_{-1/2-i\infty}^{-1/2+i\infty} \zeta(q+v) \frac{\pi}{\sin(\pi v)} \zeta(1-v) dv = \rho_2 + \sum_{n\ge 1} \frac{H_n}{n^q}$$ where $$\rho_2 = \operatorname{Res}\left(- \zeta(1-v) \frac{\pi}{\sin(\pi v)} \zeta(q+v); v=0\right).$$ We have shown that $$\sum_{n\ge 1} \frac{H_n}{n^q} = \rho_1 - \sum_{k=1}^{q-2} \zeta(1+k) (-1)^k \zeta(q-k) - \left(\rho_2 + \sum_{n\ge 1} \frac{H_n}{n^q}\right).$$ This gives $$ \sum_{n\ge 1} \frac{H_n}{n^q} = \frac{1}{2} (\rho_1-\rho_2) - \frac{1}{2} \sum_{k=1}^{q-2} \zeta(1+k) (-1)^k \zeta(q-k).$$ To conclude introduce $$ W(s) = -\zeta(1-s) \frac{\pi}{\sin(\pi s)} \zeta(q+s).$$ This implies that $$ W(-s-(q-1)) = -\zeta(s+q) \frac{\pi}{\sin(\pi (-s-(q-1)))} \zeta(1-s) = - W(s)$$ because $q$ is odd. Now $$\rho_2 = \frac{1}{2\pi i} \int_{|s|=1/2} W(s) ds.$$ Put $s = -t -(q-1)$ and note that this does not change the counterclockwise orientation of the circle induced by the first integral to get $$ -\frac{1}{2\pi i} \int_{|-t-(q-1)|=1/2} W(-t-(q-1)) dt = \frac{1}{2\pi i} \int_{|-t-(q-1)|=1/2} W(t) dt = \rho_1$$ because $|-t-(q-1)|=|(-1)(t+(q-1))|=|t-(-(q-1))|.$ The conclusion is that $$ \sum_{n\ge 1} \frac{H_n}{n^q} = -\frac{1}{2} \sum_{k=1}^{q-2} \zeta(1+k) (-1)^k \zeta(q-k)$$ for $q$ odd.

Addendum. Sun Apr 27 23:57:35 CEST 2014 I don't quite see why I didn't simply evaluate the residues $\rho_1$ and $\rho_2$ as these are both easy. This does not affect the correctness of the argument.

Addendum. Sun Nov 9 23:33:24 CET 2014 In fact the equality of the two residues follows by inspection. In retrospect it appears I wanted to avoid working with the two double poles and keep everything within the limits of pen and paper.

$\endgroup$
6
  • 1
    $\begingroup$ Wonderful answer .How have you thought of just a proof ? $\endgroup$ Commented Aug 17, 2013 at 0:42
  • $\begingroup$ By a curious coincidence this question indirectly referred to another one I did yesterday, which is what motivated me to give it a try. $\endgroup$ Commented Aug 17, 2013 at 0:48
  • $\begingroup$ Interestingly we discuss similar methods here integralsandseries.prophpbb.com/topic136.html , if you are interested you could join ! $\endgroup$ Commented Aug 17, 2013 at 0:51
  • $\begingroup$ (+1) nice work. Here is a related technique. $\endgroup$ Commented Aug 17, 2013 at 1:19
  • $\begingroup$ Thanks for the pointer and the kind remark, I had seen your work before. I do have quite a few of these (i.e. related subject matter) which you can find in my profile. $\endgroup$ Commented Aug 17, 2013 at 1:28
16
$\begingroup$

Note that,

$\displaystyle \int_{0}^{1} x^{n-1} \mathrm{d}x = \dfrac{1}{n}$

Differentiating w.r.t. to $n$, $(p-1)$ times, we get,

$\displaystyle \dfrac{1}{n^{p}} = \dfrac{(-1)^{p-1}}{(p-1)!} \int_{0}^{1} x^{n-1} [\ln(x)]^{p-1} \mathrm{d}x$

$\displaystyle \implies \text{S} = \sum_{n=1}^{\infty} \dfrac{H_{n}}{n^{p}} = \dfrac{(-1)^{p-1}}{(p-1)!} \int_{0}^{1} [\ln(x)]^{p-1} \sum_{n=1}^{\infty} H_{n} x^{n-1} \mathrm{d}x $

Since $\displaystyle \sum_{n=1}^{\infty} H_{n} x^{n} = -\dfrac{\ln(1-x)}{1-x} $, we get,

$\displaystyle \text{S} = \dfrac{(-1)^{p}}{(p-1)!} \int_{0}^{1}\dfrac{[\ln(x)]^{p-1} \cdot \ln(1-x) }{x(1-x)} \mathrm{d}x $

Recall the Beta Function $\displaystyle \operatorname{B}(a,b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} \mathrm{d}x = \dfrac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$

$\displaystyle \implies \text{S} = \dfrac{(-1)^{p}}{(p-1)!} \lim_{a \to 0^+} \lim_{b \to 0^+} \left(\dfrac{{\partial}^{p-1}}{\partial a^{p-1}} \left( \dfrac{\partial}{\partial b} \operatorname{B}(a,b) \right)\right) $

$\therefore \displaystyle \sum_{n=1}^{\infty} \dfrac{H_{n}}{n^{p}} = \left(1+\dfrac{p}{2} \right)\zeta(p+1)-\dfrac{1}{2}\sum_{k=1}^{p-2}\zeta(k+1)\zeta(p-k)$.

This is valid for any integer $p \geq 2$.

$\endgroup$
1
  • $\begingroup$ Ingenious derivation. $\endgroup$ Commented Aug 29, 2021 at 15:47
15
$\begingroup$

When $q$ is odd and greater than $1$, one can show $$ \sum_{n=1}^{\infty} \frac{H_{n}}{n^{q}} = \frac{1}{2} \sum_{k=1}^{q-2} (-1)^{k-1} \zeta(k+1) \zeta(q-k)$$

by replacing $H_{n}$ with the integral representation

$$ H_{n} = \int_{0}^{1} \frac{1-x^{n}}{1-x} \, dx \ ,$$

switching the order of integration and summation, and then repeatedly integrating by parts.

This result is also derived in Marko Riedel's answer using a different approach.


$$ \begin{align} \sum_{n=1}^{\infty} \frac{H_{n}}{n^{q}} &= \sum_{n=1}^{\infty} \frac{1}{n^{q}} \int_{0}^{1} \frac{1-x^{n}}{1-x} \, dx \\ &= \int_{0}^{1} \frac{1}{1-x} \sum_{n=1}^{\infty} \frac{1-x^{n}}{n^{q}} \, dx \\ &= \int_{0}^{1} \frac{\zeta(q)- \text{Li}_{q}(x)}{1-x} \, dx \\ &= - \Big(\zeta(q) - \text{Li}_{q}(x) \Big) \ln(1-x) \Bigg|^{1}_{0} - \int_{0}^{1} \frac{\log(1-x) \text{Li}_{q-1}(x)}{x} \, dx \\ &= -\color{#C00000} {\int_{0}^{1} \frac{\log(1-x) \text{Li}_{q-1}(x)}{x} \, dx} \\ &= \text{Li}_{2}(x) \text{Li}_{q-1}(x) \Bigg|^{1}_{0} - \int_{0}^{1} \frac{\text{Li}_{2}(x) \text{Li}_{q-2}(x)}{x} \, dx \\ &= \zeta(2) \zeta(q-1) - \int_{0}^{1} \frac{\text{Li}_{2}(x) \text{Li}_{q-2}(x)}{x} \, dx \\ &= \zeta(2) \zeta(q-1) - \text{Li}_{3}(x) \text{Li}_{q-2}(x) \Bigg|^{1}_{0} + \int_{0}^{1} \frac{\text{Li}_{3}(x)\text{Li}_{q-3}(x) }{x} \, dx \\ &= \zeta(2) \zeta(q-1) - \zeta(3) \zeta(q-2) + \int_{0}^{1} \frac{\text{Li}_{3}(x)\text{Li}_{q-3}(x) }{x} \, dx \\&= \zeta(2) \zeta(q-1) - \zeta(3) \zeta(q-2) + \zeta(4) \zeta(q-3) - \int_{0}^{1} \frac{\text{Li}_{4}(x) \text{Li}_{4-q}(x)}{x} \, dx \\ &=\zeta(2) \zeta(q-1) - \zeta(3) \zeta(q-2) + \zeta(4) \zeta(q-3) - \ldots + \zeta(q-1) \zeta(2) - \int_{0}^{1} \frac{\text{Li}_{q-1}(x) \text{Li}_{1}(x)}{x} \, dx \\ &= \sum_{k=1}^{q-2} (-1)^{k-1} \zeta(k+1) \zeta(q-k) + \color{#C00000}{\int_{0}^{1} \frac{\log(1-x) \text{Li}_{q-1}(x)}{x} \, dx} \end{align}$$

Therefore, if $q$ is odd,

$$\sum_{n=1}^{\infty} \frac{H_{n}}{n^{q}} = - \int_{0}^{1} \frac{\log(1-x) \text{Li}_{q-1}(x)}{x} \, dx = \frac{1}{2} \sum_{k=1}^{q-2} (-1)^{k-1} \zeta(k+1) \zeta(q-k).$$

$\endgroup$
0
6
$\begingroup$

Although this problem is from April 2013 I would like to take it up and try to complete the answer turning to the question

"Can we have a general formula for the alternating form?"

$$S_a(q) = \sum_{n=1}^\infty (-1)^{n+1}\frac{H_n}{n^q}$$

By inspecting the first various expressions I have made the following guess for the alternating series for even $q = 2, 4, ...$

$$S_a(q=2,4,...) = c(q)\frac{ \zeta (q+1)}{2^{q+1}}-\sum _{k=1}^{\frac{q}{2}-1} \left(1-\frac{1}{2^{q-2 k-1}}\right) \zeta (2 k+1) \zeta (q-2 k)\tag{1}$$

Here $c(q)$ are coefficients. The first 10 entries are

$$c(2,4,..,20) = \{5,59,377,2039,10229,49139,229361,1048559,4718573,20971499\}\tag{1a}$$

This sequence is not contained in https://oeis.org and I could not find a formula up to now.

For odd $q$ Mathematica returns a seemingly simple pattern

$$S_a(q=1)= \frac{\pi ^2}{12}-\frac{\log ^2(2)}{2}\tag{2a}$$

$$S_a(q=3,5,...)= \gamma \left(1-\frac{1}{2^{q-1}}\right) \zeta (q)-\;{_aF}_b^{reg}(q)\tag{2b}$$

where $\gamma$ is the Euler gamma, and ${_ aF}_b^{reg}(q)$ is the partial derivative of the regularized hypergeometric function with the parameter sets $a$ and $b$ with repect to the last parameter in $b$ taken at the argument -1.

I still need to understand this function better before posting it here. Most probably it hides a pattern similar to that of (1).

EDIT

After having completed the entry up to this point I found that the case of odd $q$ has already been treated extensively in Calculating alternating Euler sums of odd powers in March 2017.

Using these results we can easily identify the coefficients (1a) as

$$c(q) = q \left(2^q-1\right)-1$$

$\endgroup$
5
$\begingroup$

Divide both sides of $$\int_0^1x^{k-1}\operatorname{Li}_n(x)\ dx\overset{IBP}{=}(-1)^{n-1}\frac{H_k}{k^n}-\sum_{i=1}^{n-1}(-1)^i\frac{\zeta(n-i+1)}{k^i}$$ by $k$ then consider the summation from $k=1$ to $\infty$ we have $$\int_0^1\frac{\operatorname{Li}_n(x)}{x}\sum_{k=1}^\infty\frac{x^k}{k}\ dx=(-1)^{n-1}\sum_{k=1}^\infty\frac{H_k}{k^{n+1}}-\sum_{i=1}^{n-1}(-1)^i\zeta(n-i+1)\sum_{k=1}^\infty\frac1{k^{i+1}}$$ $$\small{-\int_0^1\frac{\operatorname{Li}_n(x)\ln(1-x)}{x}\ dx=(-1)^{n-1}\sum_{k=1}^\infty\frac{H_k}{k^{n+1}}-\sum_{i=1}^{n-1}(-1)^i\zeta(n-i+1)\zeta(i+1)}$$ Since $$-\int_0^1\frac{\operatorname{Li}_n(x)\ln(1-x)}{x}\ dx=-\sum_{k=1}^\infty\frac1{k^n}\int_0^1 x^{k-1}\ln(1-x)\ dx=\sum_{k=1}^\infty\frac{H_k}{k^{n+1}}$$ we have $$\sum_{k=1}^\infty\frac{H_k}{k^{n+1}}[1+(-1)^n]=-\sum_{i=1}^{n-1}(-1)^i\zeta(n-i+1)\zeta(i+1)$$ Let $n=2m$ $$\sum_{k=1}^\infty\frac{H_k}{k^{2m+1}}=-\frac12\sum_{i=1}^{2m-1}(-1)^i\zeta(2m+1-i)\zeta(i+1),\quad m\in\mathbb{Z}_{\ge 1}$$

$\endgroup$
3
$\begingroup$

We have: \begin{eqnarray} \sum\limits_{n=1}^\infty \frac{H_n}{n^q} &=& \sum\limits_{n=1}^\infty \frac{H_n}{(n+1)^q} + \zeta(q+1) \\ &=& 1/2 \left(q \zeta(q+1) - \sum\limits_{j=1}^{q-2} \zeta(j+1) \zeta(q-j) \right)+ \zeta(q+1) \end{eqnarray} where in the last line we used the result given in the answer to question Closed form expressions for harmonic sums .

$\endgroup$
3
$\begingroup$

Differentiate both sides of \begin{equation*} \int_0^1\frac{x^{n-1}\ln(x)\ln(1-x)}{1-x}\mathrm{d}x=\psi^{(1)}(n)[\psi(n)+\gamma]-\frac12\psi^{(2)}(n)\tag{1} \end{equation*} $(a-2)$ times w.r.t $n$ then let $n\to 1$, \begin{gather*} \int_0^1\frac{\ln^{a-1}(x)\ln(1-x)}{1-x}\mathrm{d}x=\lim_{n\to 1}\frac{d^{a-2}}{dn^{a-2}}\left(-\frac12\psi^{(2)}(n)+\psi^{(1)}(n)[\psi(n)+\gamma]\right)\\ =-\frac12\psi^{(a)}(1)+\lim_{n\to 1}\frac{d^{a-2}}{dn^{a-2}}\psi^{(1)}(n)[\psi(n)+\gamma]\\ \left\{\text{use $\frac{d^a}{dn^{a}}(f*g)=\sum_{k=0}^a \binom{a}{k} \frac{d^{a-k}}{dn^{a-k}} f* \frac{d^k}{dn^k}g$}\right\}\\ =-\frac12\psi^{(a)}(1)+\lim_{n\to 1}\sum_{k=0}^{a-2}\binom{a-2}{k}\frac{d^{a-k-2}}{dn^{a-k-2}}\psi^{(1)}(n)\frac{d^{k}}{dn^{k}}[\psi(n)+\gamma]\\ =-\frac12\psi^{(a)}(1)+\sum_{k=0}^{a-2}\binom{a-2}{k}\psi^{(a-k-1)}(1)\lim_{n\to 1}\frac{d^{k}}{dn^{k}}[\psi(n)+\gamma]\\ \{\text{separate the first term using $\psi(1)+\gamma=0$}\}\\ =-\frac12\psi^{(a)}(1)+\sum_{k=1}^{a-2}\binom{a-2}{k}\psi^{(a-k-1)}(1)\lim_{n\to 1}\frac{d^{k}}{dn^{k}}[\psi(n)+\gamma]\\ =-\frac12\psi^{(a)}(1)+\sum_{k=1}^{a-2}\binom{a-2}{k}\psi^{(a-k-1)}(1)\psi^{(k)}(1). \end{gather*}

Write $\psi^{(a)}(1)=(-1)^{a-1}a!\zeta(a+1)$, we get

$$\int_0^1\frac{\ln^{a-1}(x)\ln(1-x)}{1-x}\mathrm{d}x=\frac{1}{2}(-1)^{a}a!\zeta(a+1)$$ $$-\frac{1}{2}(-1)^{a}(a-1)!\sum_{k=1}^{a-2}\zeta(a-k)\zeta(k+1).$$

The proof completes on writing

$$\int_0^1\frac{\ln^{a-1}(x)\ln(1-x)}{1-x}\mathrm{d}x=-\sum_{n=1}^\infty H_n\int_0^1 x^n \ln^{a-1}(x)dx$$ $$=(-1)^{a}(a-1)!\sum_{n=1}^\infty\frac{H_n}{(n+1)^a}$$ $$=(-1)^{a}(a-1)!\sum_{n=1}^\infty\frac{H_{n-1}}{n^a}$$ $$=(-1)^{a}(a-1)!\left(\sum_{n=1}^\infty\frac{H_n}{n^a}-\zeta(a+1)\right)$$


Proof of $(1)$:

Differentiate both sides of the beta function: \begin{equation*} \int_0^1 x^{a-1}(1-x)^{b-1}\mathrm{d}x=\operatorname{B}(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \end{equation*} with respect to $a$ and $b$, \begin{equation*} \int_0^1 x^{a-1}(1-x)^{b-1}\ln(x)\ln(1-x)\mathrm{d}x=\frac{\partial^2}{\partial a\partial b}\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}. \end{equation*} Next, take the limit on both sides letting $b\to0$, \begin{gather*} \int_0^1\frac{x^{a-1}\ln(x)\ln(1-x)}{1-x}\mathrm{d}x=\lim_{ b \to 0}\frac{\partial^2}{\partial a\partial b} \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}\\ =\lim_{ b \to 0}\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}\left[(\psi(a)-\psi(a+b))(\psi(b)-\psi(a+b))-\psi^{(1)}(a+b) \right]\\ \left\{\text{write $\Gamma(b)=\frac{\Gamma(1+b)}{b}$ and $\psi(b)=\psi(1+b)-\frac1b$}\right\}\\ =\lim_{ b \to 0}\frac{\Gamma(a)\Gamma(1+b)}{\Gamma(a+b)}\times\\ \lim_{ b \to 0}\frac{(\psi(a)-\psi(a+b))(\psi(1+b)-\frac1b-\psi(a+b))-\psi^{(1)}(a+b)}{b}\\ \left\{\text{multiply by $b/b$ and note that $\lim_{ b \to 0}\frac{\Gamma(a)\Gamma(1+b)}{\Gamma(a+b)}=\frac{\Gamma(a)\Gamma(1)}{\Gamma(a)}=1$}\right\}\\ =\lim_{ b \to 0}\frac{(\psi(a)-\psi(a+b))(b\psi(1+b)-1-b\psi(a+b))-b\psi^{(1)}(a+b) }{b^2}\\ \{\text{now we can apply L'Hopital's rule, since we have $0/0$}\}\\ =\lim_{ b \to 0}\frac1{2b}\left\{\psi^{(1)}(a+b)\left[b\psi(a+b)-b\psi(1+b)\right]+[\psi(a)-\psi(a+b)]\right.\\ \left.[\psi(1+b)-\psi(a+b)-\psi^{(1)}(a+b)+b\psi^{(1)}(1+b)]-b\psi^{(2)}(a+b)\right\}\\ \{\text{apply L'Hopital's rule again, since we have $0/0$}\}\\ =\lim_{ b \to 0}\frac1{2}\left\{2\psi^{(1)}(a+b)[\psi(a+b)+b\psi^{(1)}(a+b)-\psi(1+b)-b\psi^{(1)}(1+b)]\right.\\ \left.+\psi^{(2)}(a+b)[b\psi(a+b)-b\psi(1+b)-1]+[\psi(a)-\psi(a+b)]\right.\\ \left.[2\psi^{(2)}(a+b)+b\psi^{(2)}(a+b)-2\psi^{(2)}(1+b)-b\psi^{(2)}(1+b)]-b\psi^{(3)}(a+b)\right\}\\ =\frac1{2}\left\{2\psi^{(1)}(a)[\psi(a)-\psi(1)]-\psi^{(2)}(a)\right\}. \end{gather*} Substitute $\psi(1)=-\gamma$ to complete the proof.


The idea of shifting gamma and digamma function then applying L'Hopital's rule is due to my friend Khalaf Ruhemi ( he is not a user on this site ).


Addendum: Following the same approach but letting $n\to1/2$, we have

$$\int_0^1\frac{\ln^{a-1}(x)\ln(1-x^2)}{1-x^2}\mathrm{d}x=2^{-a}\int_0^1\frac{\ln^{a-1}(x)\ln(1-x)}{\sqrt{x}(1-x)}\mathrm{d}x$$

\begin{gather} =-(-1)^a a!(2^{-1-a}-1)\zeta(a+1)-(-1)^a(a-1)!(2-2^{1-a})\ln(2)\zeta(a)\\ -\frac{(-1)^{a}(a-1)!}{2^{a+1}}\sum_{k=1}^{a-2} (2^{a-k}-1)(2^{k+1}-1)\zeta(a-k)\zeta(k+1). \end{gather}

Using this integral , we have

\begin{gather*} \sum_{n=1}^\infty\frac{H_n}{(2n+1)^a}=\sum_{n=1}^\infty H_n\left(\frac{(-1)^{a-1}}{(a-1)!}\int_0^1 x^{2n}\ln^{a-1}(x)\mathrm{d}x\right)\\ =\frac{(-1)^{a-1}}{(a-1)!}\int_0^1 \ln^{a-1}(x)\sum_{n=1}^\infty H_n x^{2n}\mathrm{d}x\\ =\frac{(-1)^a}{(a-1)!}\int_0^1\frac{\ln^{a-1}(x)\ln(1-x^2)}{1-x^2}\mathrm{d}x\\ =(2^{1-a}-2)\ln(2)\zeta(a)+a(1-2^{-a-1})\zeta(a+1)\nonumber\\ -\frac12\sum_{k=1}^{a-2}(2^{k+1}-1)(2^{-k}-2^{-a})\zeta(a-k)\zeta(k+1). \end{gather*}

$\endgroup$
3
$\begingroup$

Use the integral form of $\zeta(a)=\frac{(-1)^{a-1}}{(a-2)!}\int_0^1\frac{\ln(1-x)\ln^{a-2}(x)}{x}\mathrm{d}x$, and then interchange integration and summation signs, we get $$(-1)^aa!\sum_{k=1}^{a-1}\zeta(a-k+1)\zeta(k+1)=a(a-1)\int_0^1\int_0^1\frac{\ln(1-x)\ln(1-y)\ln^{a-2}(xy)}{xy}\textrm{d}x\textrm{d}y$$ $$\overset{x=t/y}{=}a(a-1)\int_0^1\int_0^y\frac{\ln(1-t/y)\ln(1-y)\ln^{a-2}(t)}{ty}\textrm{d}t\textrm{d}y$$ change the order of integration $$=a(a-1)\int_0^1\frac{\ln^{a-2}(t)}{t}\left(\int_t^1\frac{\ln(1-t/y)\ln(1-y)}{y}\textrm{d}y\right)\textrm{d}t$$ integrate the inner integral by parts using $\int \frac{\ln(1-t/y)}{y}\textrm{d}y=\operatorname{Li}_2(t/y)-\operatorname{Li}_2(t)$ $$=a(a-1)\int_0^1\frac{\ln^{a-2}(t)}{t}\left(\ln(1-t)(\operatorname{Li}_2(t)-\zeta(2))+\int_t^1\frac{\operatorname{Li}_2(t/y)-\operatorname{Li}_2(t)}{1-y}\textrm{d}y\right)\textrm{d}t$$ integrate by parts using the Leibniz integral rule $$=a\int_0^1\ln^{a-1}(t)\left(\frac{\ln^2(1-t)}{t}-\int_t^1\frac{\ln(1-t)-\ln(1-t/y)}{t(1-y)}\textrm{d}y\right)\textrm{d}t$$ $$=a\int_0^1\frac{\ln^{a-1}(t)}{t}\left(\ln^2(1-t)+\operatorname{Li}_2(1-t)-\zeta(2)\right)\textrm{d}t$$ $$\overset{\text{IBP}}{=}\int_0^1\ln^a(t)\left(-\frac{\ln(t)}{1-t}+\frac{2\ln(1-t)}{1-t}\right)\textrm{d}t$$ $$=(-1)^a(a+1)!\zeta(a+2)-2\sum_{n=1}^\infty H_{n-1}\int_0^1 t^{n-1}\ln^a(t)\textrm{d}t$$ $$=(-1)^a(a+1)!\zeta(a+2)-2(-1)^aa!\sum_{n=1}^\infty\frac{H_{n-1}}{n^{a+1}}$$ $$=(-1)^aa!(a+3)\zeta(a+2)-2(-1)^aa!\sum_{n=1}^\infty\frac{H_n}{n^{a+1}}$$ $$\Longrightarrow\sum_{n=1}^\infty \frac{H_n}{n^q}= \left(1+\frac{q}{2} \right)\zeta(q+1)-\frac{1}{2}\sum_{k=1}^{q-2}\zeta(k+1)\zeta(q-k).$$

Using this method, we also find:

\begin{equation*} \sum_{n=1}^\infty\frac{\overline{H}_n}{n^q}=\eta(q+1)-\frac{q}{2}\zeta(q+1)+(2-2^{1-q})\ln(2)\zeta(q)+\frac12\sum_{k=1}^{q-2}\eta(q-k)\eta(k+1), \end{equation*} and \begin{gather*} \sum_{n=1}^\infty\frac{H_n}{(2n+1)^q}=q\left(1-\frac{1}{2^{q+1}}\right)\zeta(q+1)-\left(2-2^{1-q}\right)\ln(2)\zeta(q)\nonumber\\ -\sum_{k=1}^{q-2} \left(\frac{1}{2^{q+1}}-\frac{1}{2^k}+1\right)\zeta(q-k)\zeta(k+1). \end{gather*}

For more details, check this preprint.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.