13
$\begingroup$

I am trying to evaluate this integral:$$K = \displaystyle \int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx}$$

And here is my attempt so far:

$$\begin{align} K&=\int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx} \xrightarrow{{{\text{IBP}}}} - 2\int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx}\\&= - 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^1 {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \\&=- 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \\&\quad\quad+ 2\underbrace {\int\limits_1^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} }_{x \to \frac{1}{x}} \\&= - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \end{align}$$

The last integral seems can be evaluated by using complex integration technique. But I don't know how to use it. And can I ask for help or another approach? Thank you so much.

The closed form for $K$ is: $$K=\frac{4\pi}{3}\cdot G-\frac{35}{36}\cdot\zeta(3)-\frac{5\pi}{36\sqrt{3}}(\psi'(1/3)-\psi'(2/3))$$

$\endgroup$
10
  • $\begingroup$ Similar question math.stackexchange.com/questions/4405138/… $\endgroup$ Commented Jun 12, 2023 at 10:49
  • $\begingroup$ @Zima In fact, there is closed form for this integral. $\endgroup$ Commented Jun 12, 2023 at 13:09
  • $\begingroup$ @ErikSatie Thank you for your suggestion. But these 2 problem are different too much. $\endgroup$ Commented Jun 12, 2023 at 13:10
  • 2
    $\begingroup$ @Zima $$\frac{4 \pi G}{3}-\frac{35 \zeta (3)}{36}-\frac{5 \pi \left(\psi ^{(1)}\left(\frac{1}{3}\right)-\psi ^{(1)}\left(\frac{2}{3}\right)\right)}{36 \sqrt{3}}$$. Thank you. $\endgroup$ Commented Jun 12, 2023 at 13:19
  • $\begingroup$ The integral is equivalent to $$\frac{\pi^2}{4}\log2+\frac74 \zeta(3)-2\int_0^{\frac{\pi}{2}}t \log(\sqrt{4\tan^2 t+1}-1) dt$$ $\endgroup$ Commented Jun 12, 2023 at 14:07

2 Answers 2

5
$\begingroup$

A key observation is that

$$ \arctan\left(\frac{x}{1-x^2}\right) = \arctan(x)+\arctan(x^3). \tag{1} $$

Since $\int_{0}^{1}\frac{\arctan^2(x)}{x}\,\mathrm{d}x = \frac{\pi}{2}G-\frac{7}{8}\zeta(3)$ is fairly well-known (it is enough to enforce the substitution $x=\tan\theta$ and exploit suitable Fourier series) and $\int_{0}^{1}\frac{\arctan^2(x^3)}{x}\,\mathrm{d}x$ is just a multiple of the previous integral (by the substitution $x\mapsto z^{1/3}$) the whole problem boils down to the evaluation of

$$ \int_{0}^{1}\arctan(x)\arctan(x^3)\frac{\mathrm{d}x}{x}=\int_{0}^{1}\sum_{m\geq 0}\frac{(-1)^m x^{2m+1}}{2m+1}\sum_{n\geq 0}\frac{(-1)^n x^{6n+3}}{2n+1}\frac{\mathrm{d}x}{x}\\=\sum_{m\geq 0}\sum_{n\geq 0}\frac{(-1)^{m+n}}{(2m+1)(2n+1)(2m+6n+4)}. \tag{2} $$

This Euler series can be evaluated in terms of $\psi'(s)=\frac{d^2}{ds^2}\left(\log\Gamma(s)\right)$ and we are done.

In order to address the comments: $$2\int_{0}^{1}\frac{x^3\,dx}{(1+a^2 x^2)(1+b^2 x^6)} =\int_{0}^{1}\frac{x\,dx}{(1+a^2 x)(1+b^2 x^3)}\\ \stackrel{\text{PFD}}{=}\frac{a^2\log(1+a^2)}{b^2-a^6}+\frac{1}{a^6-b^2}\int_{0}^{1}\frac{a^4-b^2 x+a^2 b^2 x^2}{1+b^2 x^3}\,dx $$ is a linear combination, with coefficients given by algebraic functions of $\alpha$ and $\beta^{1/3}$, of logarithms and arctangents evaluated at polynomials of $\alpha$ or polynomials of $\beta^{1/3}$. It is almost an unbearable task by hand, but a CAS is able to integrate such thing over $\alpha\in(0,1)$ and $\beta\in(0,1)$, making $\int_{0}^{1}\arctan(x)\arctan(x^3)\frac{dx}{x}$ solvable through Feynman's trick.

$\endgroup$
3
  • 1
    $\begingroup$ Could you give a hint how to evaluate the series? $\endgroup$ Commented Jul 15 at 20:44
  • $\begingroup$ @AmrutAyan here $\beta(s)$ doesn't refer to the dirichlet beta function. $\beta(s)=\frac{1}{2}\left[\psi\left(\frac{s+1}{2}\right)-\psi\left(\frac{s}{2}\right)\right]$ $\endgroup$ Commented Jul 16 at 19:43
  • $\begingroup$ Thank you Jack, but the series is still very hard to evaluate. It's better if you give some hints to crack it (+1). $\endgroup$ Commented Jul 18 at 4:44
0
$\begingroup$

The integral J is what you are looking for You may want to consider this (remember that it is not my solution):

https://www.facebook.com/groups/170225716325580/permalink/6514069418607813/?app=fbl

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.