This is a homework for probability. To warm-up let's consider the case of $3$.
Consider three random variables $X_1, X_2, X_3$ that are independently and identically distributed according to the Uniform$(0,1)$ distribution. I observe these random variables sequentially, one at a time. When I observe $X_1$, I have the choice to either accept it or reject it. If I accept it, the process stops. If I reject it, I move on to observe $X_2$ and again decide whether to accept or reject it. If I reject $X_2$, I must accept $X_3$.
What is the optimal strategy that I can get the maximum of $X_1, X_2, X_3$?
I found my answer is different from the standard solution.
Method1: my answer To solve this problem, we can define two thresholds, $t_1$ and $t_2$, which will determine whether we accept or reject $X_1$ and $X_2$.
Let $$f(t_1, t_2) = P(X_1 > t_1 \text{ and } X_1 > \max(X_2, X_3)) + P(X_1 < t_1 \text{ and } X_2 > t_2 \text{ and } X_2 > \max(X_1, X_3)) + P(X_1 < t_1 \text{ and } X_2 < t_2 \text{ and } X_3 > \max(X_1, X_2))$$
Our objective is to choose $t_1$ and $t_2$ to maximize $f(t_1, t_2)$. Unfortunately, there doesn't seem to be an analytic solution for this. Below is the Mathematica code to find a numerical solution:
f[t1_, t2_] := Integrate[ 1, {x1, x2, x3} \[Element] ImplicitRegion[ 0 < x1 < 1 && 0 < x2 < 1 && 0 < x3 < 1 && x1 > t1 && x1 > Max[x2, x3], {x1, x2, x3}]] + Integrate[ 1, {x1, x2, x3} \[Element] ImplicitRegion[ 0 < x1 < 1 && 0 < x2 < 1 && 0 < x3 < 1 && x1 < t1 && x2 > t2 && x2 > Max[x1, x3], {x1, x2, x3}]] + Integrate[ 1, {x1, x2, x3} \[Element] ImplicitRegion[ 0 < x1 < 1 && 0 < x2 < 1 && 0 < x3 < 1 && x1 < t1 && x2 < t2 && x3 > Max[x1, x2], {x1, x2, x3}]] NMaximize[f[t1, t2], {t1, t2}] {0.679846, {t1 -> 0.672608, t2 -> 0.545532}}
Method2: standard solution by teacher To find the optimal $t_1$, we need to maximize the following probability function $f(t_1)$: $$f(t_1) = P(X_1 > t_1 \text{ and } X_1 > \max(X_2, X_3)) + P(X_1 < t_1 \text{ and } X_1 < \max(X_2, X_3))$$
Note that the probability density function of $\max(X_2, X_3)$ is $2y$. Substituting this into the equation for $f(t_1)$, we get: $f(t_1) = -\frac{2}{3} t_1^3 + t_1 + \frac{1}{3}$. Upon maximizing $f(t_1)$, we find $t_1 = \frac{1}{\sqrt{2}}$ yields the maximum value.
Similarly, for $t_2$, the objective is to maximize the following probability function $g(t_2)$:
$$g(t_2) = P(X_2 > t_2 \text{ and } X_2 > X_3) + P(X_2 < t_2 \text{ and } X_2 < X_3)$$ By optimizing $g(t_2)$, we find that the optimal value is $t_2 = \frac{1}{2}$.
The teacher's solution can be generalized to get analytic solution to $n$ cases.
Which way is correct? I have a feeling that the instructor's solution resembles a greedy algorithm, but is it truly globally optimal?