Let $m$ be the maximum possible size of such a family. Among all such families of size $m$, consider a family $\mathcal F$ which minimizes the quantity $\sum_{X\in\mathcal F}|X|$.
Note that, if $X\in\mathcal F$, then all nonempty subsets of $X$ must also belong to $\mathcal F$; for if some nonempty subset $Y$ of $X$ did not belong to $\mathcal F$ we could replace $X$ with $Y$.
It follows that every element of $\mathcal F$ has at most two elements; for if a set $X\in\mathcal F$ contained three distinct elements $a.b.c$ then $\mathcal F$ would contain four sets $\{a,b,c\},\{a,b\},\{a,c\},\{a\}$ with nonempty intersection. Moreover, the $2$-element member of $\mathcal F$ must be pairwise disjoint; if $\{a,b\}\in\mathcal F$ and $\{a,c\}\in\mathcal F$, then $\mathcal F$ contains three sets $\{a,b\},\{a,c\},\{a\}$ with nonempty intersection.
Hence $\mathcal F$ contains at most $N$ $1$-element sets and at most $\left\lfloor\frac N2\right\rfloor$ $2$-element sets, so that $m=|\mathcal F|\le N+\left\lfloor\frac N2\right\rfloor=\left\lfloor\frac{3N}2\right\rfloor$.
More generally, suppose $2\le k\in\mathbb N$. If $\mathcal F$ is a family of nonempty subsets of the $n$-element set $V=\{1,\dots,n\}$ such that the intersection of any $k$ distinct elements of $\mathcal F$ is empty, then $|\mathcal F|\le\left\lfloor\frac{kn}2\right\rfloor$; moreover, this bound is attained if $n\ge k-1$.
Suppose $\mathcal F$ is a family of nonempty subsets of $V$ such that no element of $V$ belongs to $k$ elements of $\mathcal F$. Let $m=|\mathcal F_{\ge2}|$ where $\mathcal F_{\ge2}=\{F\in\mathcal F:|F|\ge2\}$; say $\mathcal F_{\ge2}=\{F_1,\dots,F_m\}$. We may assume that all $1$-element subsets of $V$ belong to $\mathcal F$, whence any element of $V$ belongs to at most $k-2$ elements of $\mathcal F_{\ge2}$. As in @Mike Earnest's answer, consider the $n\times m$ incidence matrix $$a_{i,j}=\begin{cases} 1\text{ if }i\in F_j,\\ 0\text{ if }i\notin F_j.\\ \end{cases}$$ Now $$2m\le\sum_{j=1}^m|F_j|=\sum_{j=1}^m\sum_{i=1}^na_{i,j}=\sum_{i=1}^n\sum_{j=1}^ma_{i,j}\le n(k-2),$$ whence $|\mathcal F_{\ge2}|=m\le\left\lfloor\frac{n(k-2)}2\right\rfloor$ and $|\mathcal F|=n+|\mathcal F_{\ge2}|\le n+\left\lfloor\frac{n(k-2)}2\right\rfloor=\left\lfloor\frac{kn}2\right\rfloor$.
If $n\ge k-1$ the bound can be attained as follows. Take a graph $G=(V,E)$, with $n$ vertices and $\left\lfloor\frac{n(k-2)}2\right\rfloor$ edges, having the degree sequence $d,d,\dots,d,d'$ where $d=k-2$ and $$d'=\begin{cases} d\ \ \ \ \ \ \ \ \text{ if }nd\text{ is even,}\\ d-1\ \text{ if }nd\text{ is odd.} \\ \end{cases}$$ Let $\mathcal F$ consist of the sets $\{v\}$ where $v\in V$ and the sets $\{u,v\}$ where $uv\in E$.