Consider $\Delta$ a root system. Let $\alpha, \beta \in \Delta$. Denote by $s_\alpha$ and $s_\beta$ the reflections in the Weyl group associated with $\alpha$ and $\beta$, respectively. Show that $(s_\alpha s_\beta)^i =1$ with $i \in \{2,3,4,6 \}$.
Suppose that $\alpha$ and $\beta$ are not connected in the Dynkin diagram. In that case, I will resolve it by brute force. We know that $$ s_\alpha (\lambda) = \lambda - 2 \frac{\langle \lambda, \alpha \rangle}{\|\alpha \|^2} \alpha \ \ \ \ \text{and} \ \ \ \ s_\beta (\lambda) = \lambda - 2 \frac{\langle \lambda, \beta \rangle}{\|\beta \|^2} \beta .$$ Then \begin{eqnarray} s_\alpha s_{\beta} (\lambda) & = & \lambda - 2 \frac{\langle \lambda, \beta \rangle}{\|\beta \|^2}\beta - 2 \frac{\langle \lambda, \alpha \rangle}{\|\alpha \|^2} \alpha + 4 \frac{\langle \lambda, \beta \rangle}{\|\beta \|^2} \frac{\langle \beta, \alpha \rangle}{\|\alpha \|^2} \alpha \\ & = & \lambda - 2 \frac{\langle \lambda, \beta \rangle}{\|\beta \|^2}\beta - 2 \frac{\langle \lambda, \alpha \rangle}{\|\alpha \|^2} \alpha \end{eqnarray} and \begin{eqnarray*} (s_\alpha s_\beta)^2 (\lambda) & = & \lambda - 2 \frac{\langle \lambda, \beta \rangle}{\|\beta \|^2} \beta - 2 \frac{\langle \lambda, \alpha \rangle}{\|\alpha \|^2} \alpha \\ & & - \frac{2}{\|\alpha \|^2} \Big\langle \lambda - 2 \frac{\langle \lambda, \beta \rangle}{\|\beta \|^2} \beta - 2 \frac{\langle \lambda, \alpha \rangle}{\|\alpha \|^2} \alpha , \beta \Big\rangle \beta \\ & & - \frac{2}{\|\alpha \|^2} \Big\langle \lambda - 2 \frac{\langle \lambda, \beta \rangle}{\|\beta \|^2} \beta - 2 \frac{\langle \lambda, \alpha \rangle}{\|\alpha \|^2} \alpha , \alpha \Big\rangle \alpha \\ & = & \lambda - 2\frac{\langle \lambda, \beta \rangle}{\|\beta \|^2}\beta - 2 \frac{\langle \lambda, \alpha \rangle}{\|\alpha \|^2} \alpha - 2 \frac{\langle \lambda, \beta \rangle}{\|\beta \|^2} \beta \\ & & + 4 \frac{\langle \lambda, \beta \rangle}{\|\beta \|^2} \beta - 2 \frac{\langle \lambda, \alpha \rangle}{\|\alpha \|^2} \alpha + 4 \frac{\langle \lambda, \alpha \rangle}{\|\alpha \|^2} \alpha \\ & = & \lambda \end{eqnarray*} for all $\lambda \in \Delta$. The other cases will be more complicated. Does anyone have a simple way to prove this?
Thanks!