1
$\begingroup$

Motivation :

I wanted to understand more the behaviour of the divisors of $3^n-2^n$,

to solve this conjecture : Conjecture : $\forall n>1, d\mid 3^n-2^n \Rightarrow v_2(d+1)<n$

So I tried to examine initially: $\tau(3^n-2^n)$ (the number of divisors $d$ of $3^n-2^n$)

My attempt:

I literally have no idea of how we can prove this result,

but I discover it from my python research routine !

from sympy import divisor_count from sympy.ntheory import factorint for n in range(2,100): print(n,factorint(divisor_count(pow(3,n)-pow(2,n)))) 

Here's a chart of the factorization of $\tau(3^n-2^n)$ , ($\forall n < 10^2 $)

$\color{blue}{2}[\color{green}{2}\color{red}:1]$ $\color{blue}{3}[\color{green}{2}\color{red}:1]$ $\color{blue}{4}[\color{green}{2}\color{red}:2]$ $\color{blue}{5}[\color{green}{2}\color{red}:1]$ $\color{blue}{6}[\color{green}{2}\color{red}:3]$ $\color{blue}{7}[\color{green}{2}\color{red}:2]$ $\color{blue}{8}[\color{green}{2}\color{red}:3]$ $\color{blue}{9}[\color{green}{2}\color{red}:2]$ $\color{blue}{10}[\color{green}{2}\color{red}:2,\color{green}{3}\color{red}:1]$ $\color{blue}{11}[\color{green}{2}\color{red}:1,\color{green}{3}\color{red}:1]$ $\color{blue}{12}[\color{green}{2}\color{red}:5]$ $\color{blue}{13}[\color{green}{2}\color{red}:2]$ $\color{blue}{14}[\color{green}{2}\color{red}:4]$ $\color{blue}{15}[\color{green}{2}\color{red}:3]$ $\color{blue}{16}[\color{green}{2}\color{red}:5]$ $\color{blue}{17}[\color{green}{2}\color{red}:1]$ $\color{blue}{18}[\color{green}{2}\color{red}:5]$ $\color{blue}{19}[\color{green}{2}\color{red}:2]$ $\color{blue}{20}[\color{green}{2}\color{red}:4,\color{green}{3}\color{red}:1]$ $\color{blue}{21}[\color{green}{2}\color{red}:5]$ $\color{blue}{22}[\color{green}{2}\color{red}:3,\color{green}{3}\color{red}:1]$ $\color{blue}{23}[\color{green}{2}\color{red}:2]$ $\color{blue}{24}[\color{green}{2}\color{red}:7]$ $\color{blue}{25}[\color{green}{2}\color{red}:3]$ $\color{blue}{26}[\color{green}{2}\color{red}:5]$ $\color{blue}{27}[\color{green}{2}\color{red}:3]$ $\color{blue}{28}[\color{green}{2}\color{red}:6]$ $\color{blue}{29}[\color{green}{2}\color{red}:1]$ $\color{blue}{30}[\color{green}{2}\color{red}:7,\color{green}{3}\color{red}:1]$ $\color{blue}{31}[\color{green}{2}\color{red}:1]$ $\color{blue}{32}[\color{green}{2}\color{red}:7]$ $\color{blue}{33}[\color{green}{2}\color{red}:4,\color{green}{3}\color{red}:1]$ $\color{blue}{34}[\color{green}{2}\color{red}:4]$ $\color{blue}{35}[\color{green}{2}\color{red}:5]$ $\color{blue}{36}[\color{green}{2}\color{red}:10]$ $\color{blue}{37}[\color{green}{2}\color{red}:2]$ $\color{blue}{38}[\color{green}{2}\color{red}:5]$ $\color{blue}{39}[\color{green}{2}\color{red}:4]$ $\color{blue}{40}[\color{green}{2}\color{red}:8,\color{green}{3}\color{red}:1]$ $\color{blue}{41}[\color{green}{2}\color{red}:4]$ $\color{blue}{42}[\color{green}{2}\color{red}:8,\color{green}{3}\color{red}:1]$ $\color{blue}{43}[\color{green}{2}\color{red}:3]$ $\color{blue}{44}[\color{green}{2}\color{red}:5,\color{green}{3}\color{red}:1]$ $\color{blue}{45}[\color{green}{2}\color{red}:5]$ $\color{blue}{46}[\color{green}{2}\color{red}:6]$ $\color{blue}{47}[\color{green}{2}\color{red}:3]$ $\color{blue}{48}[\color{green}{2}\color{red}:10]$ $\color{blue}{49}[\color{green}{2}\color{red}:4]$ $\color{blue}{50}[\color{green}{2}\color{red}:8]$ $\color{blue}{51}[\color{green}{2}\color{red}:5]$ $\color{blue}{52}[\color{green}{2}\color{red}:7,\color{green}{3}\color{red}:1]$ $\color{blue}{53}[\color{green}{2}\color{red}:1]$ $\color{blue}{54}[\color{green}{2}\color{red}:7]$ $\color{blue}{55}[\color{green}{2}\color{red}:4,\color{green}{3}\color{red}:1]$ $\color{blue}{56}[\color{green}{2}\color{red}:9]$ $\color{blue}{57}[\color{green}{2}\color{red}:4,\color{green}{3}\color{red}:1]$ $\color{blue}{58}[\color{green}{2}\color{red}:5]$ $\color{blue}{59}[\color{green}{2}\color{red}:1]$ $\color{blue}{60}[\color{green}{2}\color{red}:12,\color{green}{3}\color{red}:1]$ $\color{blue}{61}[\color{green}{2}\color{red}:3]$ $\color{blue}{62}[\color{green}{2}\color{red}:5]$ $\color{blue}{63}[\color{green}{2}\color{red}:9]$ $\color{blue}{64}[\color{green}{2}\color{red}:9]$ $\color{blue}{65}[\color{green}{2}\color{red}:6]$ $\color{blue}{66}[\color{green}{2}\color{red}:9,\color{green}{3}\color{red}:1]$ $\color{blue}{67}[\color{green}{2}\color{red}:3]$ $\color{blue}{68}[\color{green}{2}\color{red}:6]$ $\color{blue}{69}[\color{green}{2}\color{red}:8]$ $\color{blue}{70}[\color{green}{2}\color{red}:8,\color{green}{3}\color{red}:1]$ $\color{blue}{71}[\color{green}{2}\color{red}:2]$ $\color{blue}{72}[\color{green}{2}\color{red}:15]$ $\color{blue}{73}[\color{green}{2}\color{red}:3]$ $\color{blue}{74}[\color{green}{2}\color{red}:5]$ $\color{blue}{75}[\color{green}{2}\color{red}:8]$ $\color{blue}{76}[\color{green}{2}\color{red}:7]$ $\color{blue}{77}[\color{green}{2}\color{red}:6,\color{green}{3}\color{red}:1]$ $\color{blue}{78}[\color{green}{2}\color{red}:10]$ $\color{blue}{79}[\color{green}{2}\color{red}:4]$ $\color{blue}{80}[\color{green}{2}\color{red}:11,\color{green}{3}\color{red}:1]$ $\color{blue}{81}[\color{green}{2}\color{red}:6]$ $\color{blue}{82}[\color{green}{2}\color{red}:9]$ $\color{blue}{83}[\color{green}{2}\color{red}:3]$ $\color{blue}{84}[\color{green}{2}\color{red}:13,\color{green}{3}\color{red}:1]$ $\color{blue}{85}[\color{green}{2}\color{red}:4]$ $\color{blue}{86}[\color{green}{2}\color{red}:9]$ $\color{blue}{87}[\color{green}{2}\color{red}:5]$ $\color{blue}{88}[\color{green}{2}\color{red}:9,\color{green}{3}\color{red}:1]$ $\color{blue}{89}[\color{green}{2}\color{red}:2]$ $\color{blue}{90}[\color{green}{2}\color{red}:12,\color{green}{3}\color{red}:1]$ $\color{blue}{91}[\color{green}{2}\color{red}:8]$ $\color{blue}{92}[\color{green}{2}\color{red}:9]$ $\color{blue}{93}[\color{green}{2}\color{red}:4]$ $\color{blue}{94}[\color{green}{2}\color{red}:7]$ $\color{blue}{95}[\color{green}{2}\color{red}:6]$ $\color{blue}{96}[\color{green}{2}\color{red}:15]$ $\color{blue}{97}[\color{green}{2}\color{red}:2]$ $\color{blue}{98}[\color{green}{2}\color{red}:9]$ $\color{blue}{99}[\color{green}{2}\color{red}:7,\color{green}{3}\color{red}:1]$

Thanks for help !

$\endgroup$
4
  • $\begingroup$ Also , I wonder if someone could find a closed formula of $a,b$ where $\tau(3^n-2^n)=2^a\cdot 3^b$ $\endgroup$ Commented Jun 29 at 18:07
  • $\begingroup$ Your search isn't nearly far enough. After all, to find a small number $n$ for which $\tau(n)$ is not of that form, you'd first look for a prime $p$ such that $v_p(n)=4$. You won't find that with small numbers. $\endgroup$ Commented Jun 29 at 18:10
  • $\begingroup$ did you meant $\tau(3^n-2^n)$ or $\tau(n)$ ? $\endgroup$ Commented Jun 29 at 18:11
  • $\begingroup$ I meant $\tau(n)$. After all, your claim is trivially true for most small natural numbers. $\endgroup$ Commented Jun 29 at 18:12

2 Answers 2

4
$\begingroup$

Your search only involves quite small numbers. Counterexamples would need something like a prime $p$ such that $v_p(3^n-2^n)=4$ or $=6$, something like that. Since clearly $p>3$, you can't do this with small numbers.

That said, we can construct a counterexample. We can solve $$3^n\equiv 2^n\pmod {5^4}\iff n\equiv 0,\,250 \pmod {500}$$

And it is easy to check that $3^{250}\not \equiv 2^{250}\pmod {5^5}$, so $5\,|\,\tau \left(3^{250}-2^{250}\right)$. Thus $n=250$ is a counterexample.

$\endgroup$
3
  • $\begingroup$ Thanks a lot ! I've understood now that small numbers can't tell you a lot about divisibility properties ! $\endgroup$ Commented Jun 29 at 18:22
  • $\begingroup$ I have a question though, can we relate $\tau(3^n-2^n)$ with $\tau(n)$ like LTE does between $v_p(3^n-2^n)$ and $v_p(n)$ ? $\endgroup$ Commented Jun 29 at 18:22
  • 1
    $\begingroup$ @Lhachimi I wouldn't think so. Easy enough to compute for small $n$ to see if any pattern appears to hold. $\endgroup$ Commented Jun 29 at 18:26
1
$\begingroup$

$3^{250}-2^{250}=5^4\cdot11^1\cdot101^1\cdot211^1\cdot251^1\cdot1201^1\cdot513101^1\cdot39756701^1\cdot27884532843001^1$

$\cdot14726555364585012892444440090751^1 \cdot515397931586890805724262529672368870694338434001^1$

$\Rightarrow \tau(3^{250}-2^{250})=5\cdot2^{10} \not= 2^a \cdot 3^b$

$\endgroup$
4
  • $\begingroup$ The factorization took ~$7$ minutes (using PARI/GP) $\endgroup$ Commented Jul 1 at 8:31
  • 1
    $\begingroup$ You can get that factorization almost instantly if you ask it to factor the obvious factors $3^{125}-2^{125}$ and $3^{125}+2^{125}$ separately. $\endgroup$ Commented Jul 9 at 18:36
  • $\begingroup$ Yeah, it's a wonderful idea tnx :) $\endgroup$ Commented Jul 9 at 18:59
  • $\begingroup$ $$ \begin{aligned} \text{factor}(3^{125} - 2^{125}) &= 101 \cdot 211 \cdot 39756701 \cdot 515397931586890805724262529672368870694338434001 \\ \\ \text{factor}(3^{125} + 2^{125}) &= 5^4 \cdot 11 \cdot 251 \cdot 1201 \cdot 513101 \cdot 27884532843001 \cdot 14726555364585012892444440090751 \end{aligned} $$ $\endgroup$ Commented Jul 9 at 19:00

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.