Motivation :
I wanted to understand more the behaviour of the divisors of $3^n-2^n$,
to solve this conjecture : Conjecture : $\forall n>1, d\mid 3^n-2^n \Rightarrow v_2(d+1)<n$
So I tried to examine initially: $\tau(3^n-2^n)$ (the number of divisors $d$ of $3^n-2^n$)
My attempt:
I literally have no idea of how we can prove this result,
but I discover it from my python research routine !
from sympy import divisor_count from sympy.ntheory import factorint for n in range(2,100): print(n,factorint(divisor_count(pow(3,n)-pow(2,n)))) Here's a chart of the factorization of $\tau(3^n-2^n)$ , ($\forall n < 10^2 $)
$\color{blue}{2}[\color{green}{2}\color{red}:1]$ $\color{blue}{3}[\color{green}{2}\color{red}:1]$ $\color{blue}{4}[\color{green}{2}\color{red}:2]$ $\color{blue}{5}[\color{green}{2}\color{red}:1]$ $\color{blue}{6}[\color{green}{2}\color{red}:3]$ $\color{blue}{7}[\color{green}{2}\color{red}:2]$ $\color{blue}{8}[\color{green}{2}\color{red}:3]$ $\color{blue}{9}[\color{green}{2}\color{red}:2]$ $\color{blue}{10}[\color{green}{2}\color{red}:2,\color{green}{3}\color{red}:1]$ $\color{blue}{11}[\color{green}{2}\color{red}:1,\color{green}{3}\color{red}:1]$ $\color{blue}{12}[\color{green}{2}\color{red}:5]$ $\color{blue}{13}[\color{green}{2}\color{red}:2]$ $\color{blue}{14}[\color{green}{2}\color{red}:4]$ $\color{blue}{15}[\color{green}{2}\color{red}:3]$ $\color{blue}{16}[\color{green}{2}\color{red}:5]$ $\color{blue}{17}[\color{green}{2}\color{red}:1]$ $\color{blue}{18}[\color{green}{2}\color{red}:5]$ $\color{blue}{19}[\color{green}{2}\color{red}:2]$ $\color{blue}{20}[\color{green}{2}\color{red}:4,\color{green}{3}\color{red}:1]$ $\color{blue}{21}[\color{green}{2}\color{red}:5]$ $\color{blue}{22}[\color{green}{2}\color{red}:3,\color{green}{3}\color{red}:1]$ $\color{blue}{23}[\color{green}{2}\color{red}:2]$ $\color{blue}{24}[\color{green}{2}\color{red}:7]$ $\color{blue}{25}[\color{green}{2}\color{red}:3]$ $\color{blue}{26}[\color{green}{2}\color{red}:5]$ $\color{blue}{27}[\color{green}{2}\color{red}:3]$ $\color{blue}{28}[\color{green}{2}\color{red}:6]$ $\color{blue}{29}[\color{green}{2}\color{red}:1]$ $\color{blue}{30}[\color{green}{2}\color{red}:7,\color{green}{3}\color{red}:1]$ $\color{blue}{31}[\color{green}{2}\color{red}:1]$ $\color{blue}{32}[\color{green}{2}\color{red}:7]$ $\color{blue}{33}[\color{green}{2}\color{red}:4,\color{green}{3}\color{red}:1]$ $\color{blue}{34}[\color{green}{2}\color{red}:4]$ $\color{blue}{35}[\color{green}{2}\color{red}:5]$ $\color{blue}{36}[\color{green}{2}\color{red}:10]$ $\color{blue}{37}[\color{green}{2}\color{red}:2]$ $\color{blue}{38}[\color{green}{2}\color{red}:5]$ $\color{blue}{39}[\color{green}{2}\color{red}:4]$ $\color{blue}{40}[\color{green}{2}\color{red}:8,\color{green}{3}\color{red}:1]$ $\color{blue}{41}[\color{green}{2}\color{red}:4]$ $\color{blue}{42}[\color{green}{2}\color{red}:8,\color{green}{3}\color{red}:1]$ $\color{blue}{43}[\color{green}{2}\color{red}:3]$ $\color{blue}{44}[\color{green}{2}\color{red}:5,\color{green}{3}\color{red}:1]$ $\color{blue}{45}[\color{green}{2}\color{red}:5]$ $\color{blue}{46}[\color{green}{2}\color{red}:6]$ $\color{blue}{47}[\color{green}{2}\color{red}:3]$ $\color{blue}{48}[\color{green}{2}\color{red}:10]$ $\color{blue}{49}[\color{green}{2}\color{red}:4]$ $\color{blue}{50}[\color{green}{2}\color{red}:8]$ $\color{blue}{51}[\color{green}{2}\color{red}:5]$ $\color{blue}{52}[\color{green}{2}\color{red}:7,\color{green}{3}\color{red}:1]$ $\color{blue}{53}[\color{green}{2}\color{red}:1]$ $\color{blue}{54}[\color{green}{2}\color{red}:7]$ $\color{blue}{55}[\color{green}{2}\color{red}:4,\color{green}{3}\color{red}:1]$ $\color{blue}{56}[\color{green}{2}\color{red}:9]$ $\color{blue}{57}[\color{green}{2}\color{red}:4,\color{green}{3}\color{red}:1]$ $\color{blue}{58}[\color{green}{2}\color{red}:5]$ $\color{blue}{59}[\color{green}{2}\color{red}:1]$ $\color{blue}{60}[\color{green}{2}\color{red}:12,\color{green}{3}\color{red}:1]$ $\color{blue}{61}[\color{green}{2}\color{red}:3]$ $\color{blue}{62}[\color{green}{2}\color{red}:5]$ $\color{blue}{63}[\color{green}{2}\color{red}:9]$ $\color{blue}{64}[\color{green}{2}\color{red}:9]$ $\color{blue}{65}[\color{green}{2}\color{red}:6]$ $\color{blue}{66}[\color{green}{2}\color{red}:9,\color{green}{3}\color{red}:1]$ $\color{blue}{67}[\color{green}{2}\color{red}:3]$ $\color{blue}{68}[\color{green}{2}\color{red}:6]$ $\color{blue}{69}[\color{green}{2}\color{red}:8]$ $\color{blue}{70}[\color{green}{2}\color{red}:8,\color{green}{3}\color{red}:1]$ $\color{blue}{71}[\color{green}{2}\color{red}:2]$ $\color{blue}{72}[\color{green}{2}\color{red}:15]$ $\color{blue}{73}[\color{green}{2}\color{red}:3]$ $\color{blue}{74}[\color{green}{2}\color{red}:5]$ $\color{blue}{75}[\color{green}{2}\color{red}:8]$ $\color{blue}{76}[\color{green}{2}\color{red}:7]$ $\color{blue}{77}[\color{green}{2}\color{red}:6,\color{green}{3}\color{red}:1]$ $\color{blue}{78}[\color{green}{2}\color{red}:10]$ $\color{blue}{79}[\color{green}{2}\color{red}:4]$ $\color{blue}{80}[\color{green}{2}\color{red}:11,\color{green}{3}\color{red}:1]$ $\color{blue}{81}[\color{green}{2}\color{red}:6]$ $\color{blue}{82}[\color{green}{2}\color{red}:9]$ $\color{blue}{83}[\color{green}{2}\color{red}:3]$ $\color{blue}{84}[\color{green}{2}\color{red}:13,\color{green}{3}\color{red}:1]$ $\color{blue}{85}[\color{green}{2}\color{red}:4]$ $\color{blue}{86}[\color{green}{2}\color{red}:9]$ $\color{blue}{87}[\color{green}{2}\color{red}:5]$ $\color{blue}{88}[\color{green}{2}\color{red}:9,\color{green}{3}\color{red}:1]$ $\color{blue}{89}[\color{green}{2}\color{red}:2]$ $\color{blue}{90}[\color{green}{2}\color{red}:12,\color{green}{3}\color{red}:1]$ $\color{blue}{91}[\color{green}{2}\color{red}:8]$ $\color{blue}{92}[\color{green}{2}\color{red}:9]$ $\color{blue}{93}[\color{green}{2}\color{red}:4]$ $\color{blue}{94}[\color{green}{2}\color{red}:7]$ $\color{blue}{95}[\color{green}{2}\color{red}:6]$ $\color{blue}{96}[\color{green}{2}\color{red}:15]$ $\color{blue}{97}[\color{green}{2}\color{red}:2]$ $\color{blue}{98}[\color{green}{2}\color{red}:9]$ $\color{blue}{99}[\color{green}{2}\color{red}:7,\color{green}{3}\color{red}:1]$
Thanks for help !