Let ${S_{h}}'(\mathbb{R}^{n})$ be the space of tempered distributions such that if $u\in {S_{h}}'(\mathbb{R}^{n})$, then $\lim_{\lambda\rightarrow \infty}{||\phi(\lambda D)u||_{\infty}} = 0$ for all $\phi$ compactly supported smooth functions.
For $\phi \in C_{c}^{\infty}(\mathbb{R}^{n})$, we define $\phi(\lambda D)u$ by the Fourier transform $F[\phi(\lambda D)u] = \phi(\lambda t)F[u](t)$.
What do distributions in this subspace behave like? Also, how can I show that any function in $L^{p} + L^{q}$ belongs to this subspace for $p$ and $q$ finite? What happens in the case of $L^{\infty}$?