5
$\begingroup$

$A= \left[ {\begin{array}{ccccc} 1 & 1 \\ 1 & -1 \\ -2 & 4 \end{array} } \right] $ and $b = \left[ {\begin{array}{cccc} 1 \\ 2 \\ 7 \end{array} } \right] $

I use the formula $p = A(A^{T}A)^{-1}A^{T}b$

$A^{T}A = \left[ {\begin{array}{ccccc} 6 & -8 \\ -8 & 18 \\ \end{array} } \right]$

$(A^{T}A)^{-1} = \frac{1}{44} \left[ {\begin{array}{ccccc} 18 & 8 \\ 8 & 6 \\ \end{array} } \right]$

$A^{T}b = \left[ {\begin{array}{ccccc} -11 \\ 27 \\ \end{array} } \right]$

Putting everything together,

$p = \frac{1}{44}\left[ {\begin{array}{ccccc} 1 & 1 \\ 1 & -1 \\ -2 & 4 \end{array} } \right] \left[ {\begin{array}{ccccc} 18 & 8 \\ 8 & 6 \\ \end{array} } \right] \left[ {\begin{array}{ccccc} -11 \\ 27 \\ \end{array} } \right]= \frac{1}{44}\left[ {\begin{array}{ccccc} 92 \\ -56 \\ 260 \end{array} } \right]$

Which is completely different from the book's answer $p=(3,0,6)$. Where did I go wrong? Also, if the question asked for a projection of $b$ onto the row space of $A$, would I take the transpose of $A$ first, say let $B = A^{T}$ then use the formula $p = B(B^{T}B)^{-1}B^{T}b$?

$\endgroup$
3
  • $\begingroup$ Maybe the book is wrong. $\endgroup$ Commented Feb 9, 2014 at 21:02
  • $\begingroup$ Just, double check your calculations. $\endgroup$ Commented Feb 9, 2014 at 21:13
  • $\begingroup$ Your answer is correct; the matrix $\frac{1}{11} \begin{pmatrix} 10 & 3 & 1\\3 & 2 & -3\\ 1 & -3 & 10\end{pmatrix}$ is the projection matrix onto the column space of A. $\endgroup$ Commented Feb 9, 2014 at 21:36

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.