$$f(n) = \left\{\begin{matrix} 0 & n=1\\ 1 & n=2\\ f_{n-1} + f_{n-2} & n\geqslant 2\end{matrix}\right.$$
How can I prove by induction that $$f_{n} \geq \left ( 1.5 \right )^{n-1}$$ for all$$ n\geq l_{b}$$, I have to find the smallest value for $$l_{b}$$