I am asked to find the general solution of $$R\frac{dq(t)}{dt}+\frac{q(t)}{C}-V_0=0$$
I re-arrange so it is in the correct format.
$$\frac{dq(t)}{dt}+\frac{1}{CR}\cdot{q(t)}=\frac{V_0}{R}$$
Integrating factor => $e^{\int{p(x)dx}}$
In this case $p(x)=\frac{1}{CR}$
$e^{\int{\frac{1}{CR}dt}}$=$e^{\frac{t}{CR}}$
Multiply through by the IF
$$e^{\frac{t}{CR}}\frac{dq(t)}{dt}+e^{\frac{t}{CR}}\frac{1}{CR}{q(t)}=e^{\frac{t}{CR}}\frac{V_0}{R}$$
Product rule states that => $u\frac{dv}{dx}+v\frac{du}{dx}=\frac{d}{dt}(uv)$ so
$$e^{\frac{t}{CR}}\frac{dq(t)}{dt}+e^{\frac{t}{CR}}\frac{1}{CR}{q(t)}=\frac{d}{dt}(e^{\frac{t}{CR}}q(t))$$ $$\frac{d}{dt}(e^{\frac{t}{CR}}q(t))=e^{\frac{t}{CR}}\frac{V_0}{R}$$
Integrating both sides
$$\int{\frac{d}{dt}(e^{\frac{t}{CR}}q(t))dt=\int{e^{\frac{t}{CR}}\frac{V_0}{R}}}dt$$ $$e^{\frac{t}{CR}}q(t)=\frac{V_0}{R}\int{e^{\frac{t}{CR}}}dt$$
That last step I wasn't sure about. Is $V_0$ a constant in this case? I thought it was dependent on t as well.. Anyway
$$e^{\frac{t}{CR}}q(t)=\frac{V_0}{R}\cdot{\frac{1}{(\frac{1}{CR})}}\cdot{e}^{\frac{t}{CR}}+K$$ $$e^{\frac{t}{CR}}q(t)=\frac{V_0CR}{R}\cdot{e}^{\frac{t}{CR}}+K$$ $$e^{\frac{t}{CR}}q(t)=V_0C\cdot{e}^{\frac{t}{CR}}+K$$ Dividing by $e^{\frac{t}{CR}}$ $$q(t)=V_0C+\frac{K}{e^{\frac{t}{CR}}}$$ (K=the unknown constant)
I have an initial condition that states when t=0, q(t)=0 and am asked to find the particular solution.
$$q(0)=0$$ $$0=V_0C+Ke^{-\frac{0}{CR}}$$ $$=V_0C+Ke^0$$ $$=V_0C+K$$ $$K=-V_0C$$
Subbing K back in
$$q(t)=V_0C+(-V_0Ce^{-\frac{t}{CR}})$$ $$q(t)=V_0C-V_0Ce^{-\frac{t}{CR}}$$
Would this seem correct?