12
$\begingroup$

I have issues solving the following integral:

$$\int\sqrt{x^3+8}~dx$$

I tried substitution and integration by parts, but with no use. I'm guessing I have to use some trigonometric substitution.

Can anybody help solve this integral?

$\endgroup$
3
  • 4
    $\begingroup$ Circular functions won't cut it. You'll need elliptic integrals. $\endgroup$ Commented Sep 22, 2014 at 20:31
  • $\begingroup$ @DavidH You're probably right. I tried to input that in wolfram alpha. It looks messy, and there is F (elliptical integral of the first kind) $\endgroup$ Commented Sep 22, 2014 at 20:39
  • 1
    $\begingroup$ Gradshteyn & Rhyzhik includes the following related integral (3.139.7): $$\int_u^1\sqrt{1-x^3}\,dx=\frac{1}{5}\left\{\sqrt[4]{27}F(\beta,\sin 75^\circ)-2u\sqrt{1-u^3}\right\}$$ with $F(\psi,k)$ as the incomplete elliptic integral of the first kind. $\endgroup$ Commented Sep 23, 2014 at 1:52

1 Answer 1

3
$\begingroup$

For any real number $x$:

When $|x|\leq2$ ,

$$\begin{array}\int\sqrt{x^3+8}\,dx &=\int2\sqrt2\sqrt{\dfrac{x^3}{8}+1}\,dx\\ &=\int\sum\limits_{n=0}^\infty\dfrac{2\sqrt2(-1)^n(2n)!x^{3n}}{8^n4^n(n!)^2(1-2n)}\,dx\\ &=\int\sum\limits_{n=0}^\infty\dfrac{2\sqrt2(-1)^n(2n)!x^{3n}}{32^n(n!)^2(1-2n)}\,dx\\ &=\sum\limits_{n=0}^\infty\dfrac{2\sqrt2(-1)^n(2n)!x^{3n+1}}{32^n(n!)^2(1-2n)(3n+1)}+C\end{array}$$

When $|x|\geq2$ ,

$$\begin{array}\int\sqrt{x^3+8}\,dx &=\int x^\frac{3}{2}\sqrt{1+\dfrac{8}{x^3}}\,dx\\ &=\int x^\frac{3}{2}\sum\limits_{n=0}^\infty\dfrac{(-1)^n(2n)!8^n}{4^n(n!)^2(1-2n)x^{3n}}\,dx\\ &=\int\sum\limits_{n=0}^\infty\dfrac{(-1)^n(2n)!2^nx^{\frac{3}{2}-3n}}{(n!)^2(1-2n)}dx\\ &=\sum\limits_{n=0}^\infty\dfrac{(-1)^n(2n)!2^nx^{\frac{5}{2}-3n}}{(n!)^2(1-2n)\left(\dfrac{5}{2}-3n\right)}+C\\ &=\sum\limits_{n=0}^\infty\dfrac{(-1)^n(2n)!2^{n+1}}{(n!)^2(2n-1)(6n-5)x^{3n-\frac{5}{2}}}+C\end{array}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.