Skip to main content
4 of 6
added 6 characters in body
Paladin
  • 1.1k
  • 8
  • 22

Here is another solution.

Define $A_j=\{x:|f(x)|\geq j \},\forall j\in \mathbb N$ .

The given statement is clearly true if $|f|$ is bounded. So if we can show the integrals over the defined sets tend to zero, we are done.

Now, $ \chi_{A_j} $ is a collection of monotonically decreasing sequence with limit $0$. And so is true for $ |f| \chi _{A_j} $ with $|f|\chi_{A_1}\in L^1(\mu)$. So apply exercise 1.7 of Rudin or just apply DCT to get $\lim_{j\rightarrow \infty}\int_{A_j}|f| d\mu=0 $.

Paladin
  • 1.1k
  • 8
  • 22