Skip to main content
4 of 4
Fixed an error.
M. Vinay
  • 9.2k
  • 3
  • 30
  • 47

Here is a proof similar to what the OP has tried:

Let $\lambda$ be any eigenvalue of $AB$ with corresponding eigenvector $x$. Then

$$ABx = \lambda x \Rightarrow \\ BABx = B\lambda x \Rightarrow\\ BA(Bx) = \lambda (Bx) $$

which implies that $\lambda$ is an eigenvalue of $BA$ with a corresponding eigenvector $Bx$, provided $Bx$ is non-zero. If $Bx = 0$, then $ABx = 0$ implies that $\lambda = 0$.

Thus, $AB$ and $BA$ have the same non-zero eigenvalues.

M. Vinay
  • 9.2k
  • 3
  • 30
  • 47