I have a system of ODEs.
$$ \begin{gathered} \frac{u_2-u_3}{R}=\frac{u_1}{R}+C \frac{\mathrm{~d} u_1}{\mathrm{~d} t} \\ C \frac{\mathrm{~d}}{\mathrm{~d} t}\left(u_3-u_1\right)=\frac{u_1}{R}+C \frac{\mathrm{~d} u_1}{\mathrm{~d} t} \\ u_2 = K u_1 \end{gathered} $$
I want to eliminate u1[t] and u3[t] to obtain a second-order ODE for u2[t].
$$R^2 C^2 \frac{\mathrm{~d}^2 u_2}{\mathrm{~d} t^2}+(3-K) R C \frac{\mathrm{~d} u_2}{\mathrm{~d} t}+u_2=0$$
I tried using Eliminate, but the result I got was True.
Clear["Global`*"]; eq1 = (u2[t] - u3[t])/r == u1[t]/r + c D[u1[t], t]; eq2 = c (D[u3[t], t] - D[u1[t], t]) == u1[t]/r + c D[u1[t], t]; eq3 = u2[t] == k u1[t]; result = Eliminate[{eq1, eq2, eq3}, {u1[t], Derivative[1][u1][t], u3[t], Derivative[1][u3][t]}] // Simplify (*True*) Clear["Global`*"]; eq1 = (u2[t] - u3[t])/r == u1[t]/r + c D[u1[t], t]; eq2 = c (D[u3[t], t] - D[u1[t], t]) == u1[t]/r + c D[u1[t], t]; eq3 = u2[t] == k u1[t]; eqs = {eq1, eq2, eq3}; eqs2 = Join[eqs, D[eqs, t]]; Eliminate[eqs2, {u1[t], u3[t], D[u1[t], t], D[u1[t], {t, 2}], D[u3[t], t], D[u3[t], {t, 2}]}] (*True*) My questions
Why did I get
Trueinstead of a second-order ODE?Is there a general method to achieve this?

Eliminatecannot cleverly handle derivative term, it just handlesu1[t]andD[u1[t], t]as two different variables. As to the second question, as shown by answers below, there exist methods with certain universality, but I don't think there exists a fully automatic method (at least for now), see also: mathematica.stackexchange.com/… $\endgroup$