Consider these code, which solve the same equation using DSolve and NDSolve, why do they give different answer? I'm using version 11.0 on WinWindows 8.1.
Another example:
L = 2; eq = D[u[x, t], t] == D[u[x, t], x, x]; opts = Method -> {"MethodOfLines", "SpatialDiscretization" -> {"FiniteElement", "MeshOptions" -> {"MaxCellMeasure" -> 0.001}}}; sol1 = NDSolveValue[{eq, u[x, 0] == x, u[0, t] == 1, u[2, t] == 1}, u, {x, 0, L}, {t, 0, L}, opts]; sol2 = u[x, t] /. First@DSolve[{eq, u[x, 0] == x, u[0, t] == 1, u[2, t] == 1}, u[x, t], {x, t}] (* 1 + Inactive[Sum][-(( 2 (1 + (-1)^K[1]) E^(-(1/4) \[Pi]^2 t K[1]^2) Sin[1/2 \[Pi] x K[1]])/(\[Pi] K[1])), {K[1], 1, \[Infinity]}] *) T = 1/10; Plot[{Evaluate[sol1[x, T]], Evaluate[sol2 /. {Infinity -> 100} /. t -> T // Activate]}, {x, 0, L}, PlotLegends -> {"numeric solution", "symbolic solution"}] 
