I'm trying to use Mathematica to solve a complicated system of equations. Here is a screenshot of the equations, and what Mathematica outputs. http://imgur.com/Dw9JdAv

The variables $v_i$ and $w_i$ act as constants in this equation. I do understand the solution Mathematica gives is technically correct, however I do not want the trivial solution. How can I make Mathematica ignore that particular solution?
This is the code, as asked for.
ybe[a_, b_, c_, d_, e_, f_, R_, S_, T_] := Sum[Subscript[R, d, e, \[Alpha], \[Beta]] Subscript[S, \[Alpha], f, a, \[Gamma]] Subscript[T, \[Beta], \[Gamma], b, c] - Subscript[T, e, f, \[Beta], \[Gamma]] Subscript[S, d, \[Gamma], \[Alpha], c] Subscript[R, \[Alpha], \[Beta], a, b], {\[Alpha], 0, 1}, {\[Beta], 0,1}, {\[Gamma], 0, 1}] Subscript[r[u_], k_, l_, i_, j_] := \[Delta][i+j, k+l] (\[Delta][i, j, k, l, 0] Subscript[u, 1] + \[Delta][i, j, k, l, 1] Subscript[u, 2] + \[Delta][i, k, 0] \[Delta][j, l, 1] Subscript[u, 3] + \[Delta][i, k, 1] \[Delta][j, l, 0] Subscript[u, 4] + \[Delta][i, l, 1] \[Delta][j, k, 0] Subscript[u, 5] + \[Delta][i, l ,0] \[Delta][j, k, 1] Subscript[u, 6]) eqns = DeleteCases[ Flatten[ Table[ybe[a, b, c, d, e, f, r[u], r[v], r[w]] == 0, {a, 0, 1}, {b, 0, 1}, {c, 0, 1}, {d, 0, 1}, {e, 0, 1}, {f, 0, 1}]], 0 == 0] Solve[eqns, Table[Subscript[u, i], {i, 6}]]