Skip to main content
edited tags
Link
Artes
  • 58.2k
  • 13
  • 161
  • 251
added 13 characters in body
Source Link
Szabolcs
  • 238.9k
  • 32
  • 653
  • 1.3k

I'm trying to use Mathematica to solve a complicated system of equations. Here is a screenshot of the equations, and what Mathematica outputs. http://imgur.com/Dw9JdAv

The variables $v_i$ and $w_i$ act as constants in this equation. I do understand the solution Mathematica gives is technically correct, however I do not want the trivial solution. How can I make Mathematica ignore that particular solution?

This is the code, as asked for.

ybe[a_, b_, c_, d_, e_, f_, R_, S_, T_] := Sum[Subscript[R, d, e, \[Alpha], \[Beta]] Subscript[S, \[Alpha], f, a, \[Gamma]] Subscript[T, \[Beta], \[Gamma], b, c] - Subscript[T, e, f, \[Beta], \[Gamma]] Subscript[S, d, \[Gamma], \[Alpha], c] Subscript[R, \[Alpha], \[Beta], a, b], {\[Alpha], 0, 1}, {\[Beta], 0,1}, {\[Gamma], 0, 1}] Subscript[r[u_], k_, l_, i_, j_] := \[Delta][i+j, k+l] (\[Delta][i, j, k, l, 0] Subscript[u, 1] + \[Delta][i, j, k, l, 1] Subscript[u, 2] + \[Delta][i, k, 0] \[Delta][j, l, 1] Subscript[u, 3] + \[Delta][i, k, 1] \[Delta][j, l, 0] Subscript[u, 4] + \[Delta][i, l, 1] \[Delta][j, k, 0] Subscript[u, 5] + \[Delta][i, l ,0] \[Delta][j, k, 1] Subscript[u, 6]) eqns = DeleteCases[ Flatten[ Table[ybe[a, b, c, d, e, f, r[u], r[v], r[w]] == 0, {a, 0, 1}, {b, 0, 1}, {c, 0, 1}, {d, 0, 1}, {e, 0, 1}, {f, 0, 1}]], 0 == 0] Solve[eqns, Table[Subscript[u, i], {i, 6}]] 

I'm trying to use Mathematica to solve a complicated system of equations. Here is a screenshot of the equations, and what Mathematica outputs. http://imgur.com/Dw9JdAv

The variables $v_i$ and $w_i$ act as constants in this equation. I do understand the solution Mathematica gives is technically correct, however I do not want the trivial solution. How can I make Mathematica ignore that particular solution?

This is the code, as asked for.

ybe[a_, b_, c_, d_, e_, f_, R_, S_, T_] := Sum[Subscript[R, d, e, \[Alpha], \[Beta]] Subscript[S, \[Alpha], f, a, \[Gamma]] Subscript[T, \[Beta], \[Gamma], b, c] - Subscript[T, e, f, \[Beta], \[Gamma]] Subscript[S, d, \[Gamma], \[Alpha], c] Subscript[R, \[Alpha], \[Beta], a, b], {\[Alpha], 0, 1}, {\[Beta], 0,1}, {\[Gamma], 0, 1}] Subscript[r[u_], k_, l_, i_, j_] := \[Delta][i+j, k+l] (\[Delta][i, j, k, l, 0] Subscript[u, 1] + \[Delta][i, j, k, l, 1] Subscript[u, 2] + \[Delta][i, k, 0] \[Delta][j, l, 1] Subscript[u, 3] + \[Delta][i, k, 1] \[Delta][j, l, 0] Subscript[u, 4] + \[Delta][i, l, 1] \[Delta][j, k, 0] Subscript[u, 5] + \[Delta][i, l ,0] \[Delta][j, k, 1] Subscript[u, 6]) eqns = DeleteCases[ Flatten[ Table[ybe[a, b, c, d, e, f, r[u], r[v], r[w]] == 0, {a, 0, 1}, {b, 0, 1}, {c, 0, 1}, {d, 0, 1}, {e, 0, 1}, {f, 0, 1}]], 0 == 0] Solve[eqns, Table[Subscript[u, i], {i, 6}]] 

I'm trying to use Mathematica to solve a complicated system of equations. Here is a screenshot of the equations, and what Mathematica outputs.

The variables $v_i$ and $w_i$ act as constants in this equation. I do understand the solution Mathematica gives is technically correct, however I do not want the trivial solution. How can I make Mathematica ignore that particular solution?

This is the code, as asked for.

ybe[a_, b_, c_, d_, e_, f_, R_, S_, T_] := Sum[Subscript[R, d, e, \[Alpha], \[Beta]] Subscript[S, \[Alpha], f, a, \[Gamma]] Subscript[T, \[Beta], \[Gamma], b, c] - Subscript[T, e, f, \[Beta], \[Gamma]] Subscript[S, d, \[Gamma], \[Alpha], c] Subscript[R, \[Alpha], \[Beta], a, b], {\[Alpha], 0, 1}, {\[Beta], 0,1}, {\[Gamma], 0, 1}] Subscript[r[u_], k_, l_, i_, j_] := \[Delta][i+j, k+l] (\[Delta][i, j, k, l, 0] Subscript[u, 1] + \[Delta][i, j, k, l, 1] Subscript[u, 2] + \[Delta][i, k, 0] \[Delta][j, l, 1] Subscript[u, 3] + \[Delta][i, k, 1] \[Delta][j, l, 0] Subscript[u, 4] + \[Delta][i, l, 1] \[Delta][j, k, 0] Subscript[u, 5] + \[Delta][i, l ,0] \[Delta][j, k, 1] Subscript[u, 6]) eqns = DeleteCases[ Flatten[ Table[ybe[a, b, c, d, e, f, r[u], r[v], r[w]] == 0, {a, 0, 1}, {b, 0, 1}, {c, 0, 1}, {d, 0, 1}, {e, 0, 1}, {f, 0, 1}]], 0 == 0] Solve[eqns, Table[Subscript[u, i], {i, 6}]] 
Improved formatting.
Source Link
m_goldberg
  • 108.6k
  • 16
  • 107
  • 263

I'm trying to use MathematicaMathematica to solve a complicated system of equations. Here is a screenshot of the equations, and what MathematicaMathematica outputs. http://imgur.com/Dw9JdAv

The variables v_i$v_i$ and w_i$w_i$ act as constants in this equation. I do understand the solution mathematicaMathematica gives is technically correct, however I do not want the trivial solution. HowHow can I make MathematicaMathematica ignore that particular solution?

Thanks

This is the code, as asked for.

ybe[a_, b_, c_, d_, e_, f_, R_, S_, T_] :=  Sum[Subscript[R, d, e, \[Alpha], \[Beta]] Subscript[S, \[Alpha], f, a, \[Gamma]] Subscript[T, \[Beta], \[Gamma], b, c] - Subscript[T, e, f, \[Beta], \[Gamma]] Subscript[S, d, \[Gamma], \[Alpha], c] Subscript[R, \[Alpha], \[Beta], a, b], {\[Alpha], 0, 1}, {\[Beta], 0,1}, {\[Gamma], 0, 1}] Subscript[r[u_], k_, l_, i_, j_] :=\[Delta][i+j= \[Delta][i+j, k+l] (\[Delta][i, j, k, l,0]Subscript[u 0] Subscript[u, 1]+\[Delta][i1] + \[Delta][i, j, k, l,1]Subscript[u 1] Subscript[u, 2]+\[Delta][i2] + \[Delta][i, k,0]\[Delta][j 0] \[Delta][j, l,1]Subscript[u 1] Subscript[u, 3]+\[Delta][i3] + \[Delta][i, k,1]\[Delta][j 1] \[Delta][j, l,0]Subscript[u 0] Subscript[u, 4]+\[Delta][i4] + \[Delta][i, l,1]\[Delta][j 1] \[Delta][j, k,0]Subscript[u 0] Subscript[u, 5]+\[Delta][i5] + \[Delta][i, l ,0]\[Delta][j0] \[Delta][j, k,1]Subscript[u 1] Subscript[u, 6]) eqns = DeleteCases[   Flatten[Table[Flatten[   ybe[aTable[ybe[a, b, c, d, e, f, r[u], r[v], r[w]] == 0,  {a, 0, 1}, {b, 0,  1}, {c, 0, 1}, {d, 0, 1}, {e, 0, 1}, {f, 0, 1}]],  0 == 0] Solve[eqns, Table[Subscript[u, i], {i, 6}]] 

Solve[eqns, Table[Subscript[u, i], {i, 6}]]

I'm trying to use Mathematica to solve a complicated system of equations. Here is a screenshot of the equations, and what Mathematica outputs. http://imgur.com/Dw9JdAv

The variables v_i and w_i act as constants in this equation. I do understand the solution mathematica gives is technically correct, however I do not want the trivial solution. How can I make Mathematica ignore that particular solution?

Thanks

This is the code, as asked for.

ybe[a_,b_,c_,d_,e_,f_,R_,S_,T_]:= Sum[Subscript[R, d,e,\[Alpha],\[Beta]] Subscript[S, \[Alpha],f,a,\[Gamma]] Subscript[T, \[Beta],\[Gamma],b,c]-Subscript[T, e,f,\[Beta],\[Gamma]] Subscript[S, d,\[Gamma],\[Alpha],c] Subscript[R, \[Alpha],\[Beta],a,b],{\[Alpha],0,1},{\[Beta],0,1},{\[Gamma],0,1}] Subscript[r[u_], k_,l_,i_,j_]:=\[Delta][i+j,k+l](\[Delta][i,j,k,l,0]Subscript[u, 1]+\[Delta][i,j,k,l,1]Subscript[u, 2]+\[Delta][i,k,0]\[Delta][j,l,1]Subscript[u, 3]+\[Delta][i,k,1]\[Delta][j,l,0]Subscript[u, 4]+\[Delta][i,l,1]\[Delta][j,k,0]Subscript[u, 5]+\[Delta][i,l,0]\[Delta][j,k,1]Subscript[u, 6]) eqns = DeleteCases[   Flatten[Table[   ybe[a, b, c, d, e, f, r[u], r[v], r[w]] == 0, {a, 0, 1}, {b, 0,  1}, {c, 0, 1}, {d, 0, 1}, {e, 0, 1}, {f, 0, 1}]], 0 == 0] 

Solve[eqns, Table[Subscript[u, i], {i, 6}]]

I'm trying to use Mathematica to solve a complicated system of equations. Here is a screenshot of the equations, and what Mathematica outputs. http://imgur.com/Dw9JdAv

The variables $v_i$ and $w_i$ act as constants in this equation. I do understand the solution Mathematica gives is technically correct, however I do not want the trivial solution. How can I make Mathematica ignore that particular solution?

This is the code, as asked for.

ybe[a_, b_, c_, d_, e_, f_, R_, S_, T_] :=  Sum[Subscript[R, d, e, \[Alpha], \[Beta]] Subscript[S, \[Alpha], f, a, \[Gamma]] Subscript[T, \[Beta], \[Gamma], b, c] - Subscript[T, e, f, \[Beta], \[Gamma]] Subscript[S, d, \[Gamma], \[Alpha], c] Subscript[R, \[Alpha], \[Beta], a, b], {\[Alpha], 0, 1}, {\[Beta], 0,1}, {\[Gamma], 0, 1}] Subscript[r[u_], k_, l_, i_, j_] := \[Delta][i+j, k+l] (\[Delta][i, j, k, l, 0] Subscript[u, 1] + \[Delta][i, j, k, l, 1] Subscript[u, 2] + \[Delta][i, k, 0] \[Delta][j, l, 1] Subscript[u, 3] + \[Delta][i, k, 1] \[Delta][j, l, 0] Subscript[u, 4] + \[Delta][i, l, 1] \[Delta][j, k, 0] Subscript[u, 5] + \[Delta][i, l ,0] \[Delta][j, k, 1] Subscript[u, 6]) eqns = DeleteCases[ Flatten[ Table[ybe[a, b, c, d, e, f, r[u], r[v], r[w]] == 0,  {a, 0, 1}, {b, 0, 1}, {c, 0, 1}, {d, 0, 1}, {e, 0, 1}, {f, 0, 1}]],  0 == 0] Solve[eqns, Table[Subscript[u, i], {i, 6}]] 
edited title
Source Link
Mary
  • 1
  • 2
Loading
Source Link
Mary
  • 1
  • 2
Loading