Skip to main content

Now I can use the DivDiv operator to express a differential equation, in this case the continuity equation in hydrodynamics.:

 ({0, 0, 0},1) ({0, 0, 1},0) {nx [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1) ({0, 0, 1},0) ny [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1) ({0, 0, 1},0) nz [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t]} == 0 

({0, 0, 0},1) ({0, 0, 1},0) {nx [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1)
({0, 0, 1},0) ny [{x, y, z}, t] + vz[{x, y, z}, t] nz
[{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1)
({0, 0, 1},0) nz [{x, y, z}, t] + vz[{x, y, z}, t] nz
[{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t]} == 0

Now I can use the Div operator to express a differential equation, in this case the continuity equation in hydrodynamics.

 ({0, 0, 0},1) ({0, 0, 1},0) {nx [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1) ({0, 0, 1},0) ny [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1) ({0, 0, 1},0) nz [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t]} == 0 

Now I can use the Div operator to express a differential equation, in this case the continuity equation in hydrodynamics:

({0, 0, 0},1) ({0, 0, 1},0) {nx [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1)
({0, 0, 1},0) ny [{x, y, z}, t] + vz[{x, y, z}, t] nz
[{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1)
({0, 0, 1},0) nz [{x, y, z}, t] + vz[{x, y, z}, t] nz
[{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t]} == 0

Tweeted twitter.com/#!/StackMma/status/302179379860103168
Removed irrelevant tags
Source Link
m_goldberg
  • 108.6k
  • 16
  • 107
  • 263

I am trying to rearrange and manipulate some vector differential equations in MathematicaMathematica. As far as I understand you have to tell MathematicaMathematica that a variable is a vector by specifying the components of the vector. For example

I would like MathematicaMathematica to write the equation in vectorial form so that I can rearrange it and use vector identities to manipulate it.

Is there a way to do this?

Thanks

I am trying to rearrange and manipulate some vector differential equations in Mathematica. As far as I understand you have to tell Mathematica that a variable is a vector by specifying the components of the vector. For example

I would like Mathematica to write the equation in vectorial form so that I can rearrange it and use vector identities to manipulate it.

Is there a way to do this?

Thanks

I am trying to rearrange and manipulate some vector differential equations in Mathematica. As far as I understand you have to tell Mathematica that a variable is a vector by specifying the components of the vector. For example

I would like Mathematica to write the equation in vectorial form so that I can rearrange it and use vector identities to manipulate it.

Is there a way to do this?

Source Link

Is it possible to do vector calculus in Mathematica?

I am trying to rearrange and manipulate some vector differential equations in Mathematica. As far as I understand you have to tell Mathematica that a variable is a vector by specifying the components of the vector. For example

r = {x, y, z}; 

If I want to define vector fields I have to do it in the following way

v = {vx[r, t], vy[r, t], vz[r, t]}; n = {nx[r, t], ny[r, t], nz[r, t]}; 

Now I can use the Div operator to express a differential equation, in this case the continuity equation in hydrodynamics.

D[n, t] + Div[n*v, r] == 0 

My problem is the output I get from this. It looks absolutely horrible and I can't do anything with it.

 ({0, 0, 0},1) ({0, 0, 1},0) {nx [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1) ({0, 0, 1},0) ny [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1) ({0, 0, 1},0) nz [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t]} == 0 

I would like Mathematica to write the equation in vectorial form so that I can rearrange it and use vector identities to manipulate it.

Is there a way to do this?

Thanks