Now I can use the DivDiv operator to express a differential equation, in this case the continuity equation in hydrodynamics.:
({0, 0, 0},1) ({0, 0, 1},0) {nx [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1) ({0, 0, 1},0) ny [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1) ({0, 0, 1},0) nz [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t]} == 0 ({0, 0, 0},1) ({0, 0, 1},0) {nx [{x, y, z}, t] + vz[{x, y, z}, t] nz [{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1)
({0, 0, 1},0) ny [{x, y, z}, t] + vz[{x, y, z}, t] nz
[{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t], ({0, 0, 0},1)
({0, 0, 1},0) nz [{x, y, z}, t] + vz[{x, y, z}, t] nz
[{x, y, z}, t] + ({0, 0, 1},0) ({0, 1, 0},0) nz[{x, y, z}, t] vz [{x, y, z}, t] + vy[{x, y, z}, t] ny [{x, y, z}, t] + ({0, 1, 0},0) ({1, 0, 0},0) ny[{x, y, z}, t] vy [{x, y, z}, t] + vx[{x, y, z}, t] nx [{x, y, z}, t] + ({1, 0, 0},0) nx[{x, y, z}, t] vx [{x, y, z}, t]} == 0