Skip to main content
replaced http://mathematica.stackexchange.com/ with https://mathematica.stackexchange.com/
Source Link

To make the result of NSum more precise you can use also the NSumTerms option (15 by default, see e.g. Numerical Evaluation of Sums and Products) appropriately increased. Let's try e.g. :

a1 = NSum[ HarmonicNumber[2 m]/m^3, {m, 1, Infinity}, WorkingPrecision -> 140, PrecisionGoal -> 70, NSumTerms -> 2000] 
 1.9746275368413284954203787248027995910222173561519748313727983181550691548 

now compare

NIntegrate[ x^2 Log[Sin[x]] Log[Cos[x]], {x, 0, Pi/2}, WorkingPrecision -> 75, PrecisionGoal -> 70 ] N[ Pi^3/24 Log[2]^2 + Log[2] Pi/16 Zeta[3] - Pi^5/960 - Pi/16 a1, 75] % - %% 
 0.0778219793722938643380943991911599389199168078241333818284167516820632583615 
 0.07782197937229386433809439919115993891991680782413338182841675168206325836 
 0.*10^-75 

That's pretty close.

Regarding your definition of b I had no problems with evaluating it, e.g.

N[b, 70] 
1.974627536841328495420378724802799591022217356151974831372798318155069 

You can see that the NSum result is really close to this value.

For some closely related problems with NSum see e.g. this question Precision differencesPrecision differences.

To make the result of NSum more precise you can use also the NSumTerms option (15 by default, see e.g. Numerical Evaluation of Sums and Products) appropriately increased. Let's try e.g. :

a1 = NSum[ HarmonicNumber[2 m]/m^3, {m, 1, Infinity}, WorkingPrecision -> 140, PrecisionGoal -> 70, NSumTerms -> 2000] 
 1.9746275368413284954203787248027995910222173561519748313727983181550691548 

now compare

NIntegrate[ x^2 Log[Sin[x]] Log[Cos[x]], {x, 0, Pi/2}, WorkingPrecision -> 75, PrecisionGoal -> 70 ] N[ Pi^3/24 Log[2]^2 + Log[2] Pi/16 Zeta[3] - Pi^5/960 - Pi/16 a1, 75] % - %% 
 0.0778219793722938643380943991911599389199168078241333818284167516820632583615 
 0.07782197937229386433809439919115993891991680782413338182841675168206325836 
 0.*10^-75 

That's pretty close.

Regarding your definition of b I had no problems with evaluating it, e.g.

N[b, 70] 
1.974627536841328495420378724802799591022217356151974831372798318155069 

You can see that the NSum result is really close to this value.

For some closely related problems with NSum see e.g. this question Precision differences.

To make the result of NSum more precise you can use also the NSumTerms option (15 by default, see e.g. Numerical Evaluation of Sums and Products) appropriately increased. Let's try e.g. :

a1 = NSum[ HarmonicNumber[2 m]/m^3, {m, 1, Infinity}, WorkingPrecision -> 140, PrecisionGoal -> 70, NSumTerms -> 2000] 
 1.9746275368413284954203787248027995910222173561519748313727983181550691548 

now compare

NIntegrate[ x^2 Log[Sin[x]] Log[Cos[x]], {x, 0, Pi/2}, WorkingPrecision -> 75, PrecisionGoal -> 70 ] N[ Pi^3/24 Log[2]^2 + Log[2] Pi/16 Zeta[3] - Pi^5/960 - Pi/16 a1, 75] % - %% 
 0.0778219793722938643380943991911599389199168078241333818284167516820632583615 
 0.07782197937229386433809439919115993891991680782413338182841675168206325836 
 0.*10^-75 

That's pretty close.

Regarding your definition of b I had no problems with evaluating it, e.g.

N[b, 70] 
1.974627536841328495420378724802799591022217356151974831372798318155069 

You can see that the NSum result is really close to this value.

For some closely related problems with NSum see e.g. this question Precision differences.

Source Link
Artes
  • 58.2k
  • 13
  • 161
  • 251

To make the result of NSum more precise you can use also the NSumTerms option (15 by default, see e.g. Numerical Evaluation of Sums and Products) appropriately increased. Let's try e.g. :

a1 = NSum[ HarmonicNumber[2 m]/m^3, {m, 1, Infinity}, WorkingPrecision -> 140, PrecisionGoal -> 70, NSumTerms -> 2000] 
 1.9746275368413284954203787248027995910222173561519748313727983181550691548 

now compare

NIntegrate[ x^2 Log[Sin[x]] Log[Cos[x]], {x, 0, Pi/2}, WorkingPrecision -> 75, PrecisionGoal -> 70 ] N[ Pi^3/24 Log[2]^2 + Log[2] Pi/16 Zeta[3] - Pi^5/960 - Pi/16 a1, 75] % - %% 
 0.0778219793722938643380943991911599389199168078241333818284167516820632583615 
 0.07782197937229386433809439919115993891991680782413338182841675168206325836 
 0.*10^-75 

That's pretty close.

Regarding your definition of b I had no problems with evaluating it, e.g.

N[b, 70] 
1.974627536841328495420378724802799591022217356151974831372798318155069 

You can see that the NSum result is really close to this value.

For some closely related problems with NSum see e.g. this question Precision differences.