Skip to main content
added 6 characters in body
Source Link
cvgmt
  • 91.7k
  • 6
  • 113
  • 194

Edit

  • To get a more smooth surface, we use RegionPlot3D and use DisplayFunction to transform the region.
RegionPlot3D[BoundaryDiscretizeRegion@Cuboid[]RegionPlot3D[ BoundaryDiscretizeRegion[Cuboid[], MaxCellMeasure -> .01], DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x  (-x + y + z), y  (x - y + z), z  (x + y - z)}], PlotPointsBoxed -> 60False, MaxRecursion -> 2, Boxed -> False]2] 

enter image description here

  • Transform the Dodecahedron.
reg = PolyhedronData["Dodecahedron", "Region"]; RegionPlot3D[ BoundaryDiscretizeRegion@regBoundaryDiscretizeRegion[reg, MaxCellMeasure -> .01],  DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], PlotPointsMaxRecursion -> 802,  MaxRecursion -> 6, Boxed -> False] 

enter image description here

Original

  • We can DiscretizeRegion the Cuboid[] at first.
Clear[r]; r = TransformedRegion[DiscretizeRegion@Cuboid[], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; Region[r] 

enter image description here

  • Test another reg,for example some polyhedrons.
Clear[reg, r]; reg = PolyhedronData["Dodecahedron", "Region"]; r = TransformedRegion[DiscretizeRegion[reg], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; {reg, Region[r]} 

enter image description here

Edit

  • To get a more smooth surface, we use RegionPlot3D and use DisplayFunction to transform the region.
RegionPlot3D[BoundaryDiscretizeRegion@Cuboid[], DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x  (-x + y + z), y  (x - y + z), z  (x + y - z)}], PlotPoints -> 60, MaxRecursion -> 2, Boxed -> False] 

enter image description here

  • Transform the Dodecahedron.
reg = PolyhedronData["Dodecahedron", "Region"]; RegionPlot3D[ BoundaryDiscretizeRegion@reg, DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], PlotPoints -> 80,  MaxRecursion -> 6, Boxed -> False] 

enter image description here

Original

  • We can DiscretizeRegion the Cuboid[] at first.
Clear[r]; r = TransformedRegion[DiscretizeRegion@Cuboid[], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; Region[r] 

enter image description here

  • Test another reg,for example some polyhedrons.
Clear[reg, r]; reg = PolyhedronData["Dodecahedron", "Region"]; r = TransformedRegion[DiscretizeRegion[reg], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; {reg, Region[r]} 

enter image description here

Edit

  • To get a more smooth surface, we use RegionPlot3D and use DisplayFunction to transform the region.
RegionPlot3D[ BoundaryDiscretizeRegion[Cuboid[], MaxCellMeasure -> .01], DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], Boxed -> False, MaxRecursion -> 2] 

enter image description here

  • Transform the Dodecahedron.
reg = PolyhedronData["Dodecahedron", "Region"]; RegionPlot3D[ BoundaryDiscretizeRegion[reg, MaxCellMeasure -> .01],  DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], MaxRecursion -> 2, Boxed -> False] 

enter image description here

Original

  • We can DiscretizeRegion the Cuboid[] at first.
Clear[r]; r = TransformedRegion[DiscretizeRegion@Cuboid[], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; Region[r] 

enter image description here

  • Test another reg,for example some polyhedrons.
Clear[reg, r]; reg = PolyhedronData["Dodecahedron", "Region"]; r = TransformedRegion[DiscretizeRegion[reg], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; {reg, Region[r]} 

enter image description here

added 11 characters in body
Source Link
cvgmt
  • 91.7k
  • 6
  • 113
  • 194

Edit

  • To get a more smooth surface, we use RegionPlot3D and use DisplayFunction to transform the region.
RegionPlot3D[DiscretizeRegion@Cuboid[]RegionPlot3D[BoundaryDiscretizeRegion@Cuboid[], DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x  (-x + y + z), y  (x - y + z), z  (x + y - z)}], PlotPoints -> 60, MaxRecursion -> 42, Boxed -> False] 

enter image description here

  • Transform the Dodecahedron.
reg = PolyhedronData["Dodecahedron", "Region"]; RegionPlot3D[ BoundaryDiscretizeRegion@reg, DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], PlotPoints -> 80, MaxRecursion -> 6, Boxed -> False] 

enter image description here

Original

  • We can DiscretizeRegion the Cuboid[] at first.
Clear[r]; r = TransformedRegion[DiscretizeRegion@Cuboid[], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; Region[r] 

enter image description here

  • Test another reg,for example some polyhedrons.
Clear[reg, r]; reg = PolyhedronData["Dodecahedron", "Region"]; r = TransformedRegion[DiscretizeRegion[reg], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; {reg, Region[r]} 

enter image description here

  • To get a more smooth surface, we use RegionPlot3D and use DisplayFunction to transform the region.
RegionPlot3D[DiscretizeRegion@Cuboid[], DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], PlotPoints -> 60, MaxRecursion -> 4, Boxed -> False] 

enter image description here

  • Transform the Dodecahedron.
reg = PolyhedronData["Dodecahedron", "Region"]; RegionPlot3D[ BoundaryDiscretizeRegion@reg, DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], PlotPoints -> 80, MaxRecursion -> 6, Boxed -> False] 

enter image description here

  • We can DiscretizeRegion the Cuboid[] at first.
Clear[r]; r = TransformedRegion[DiscretizeRegion@Cuboid[], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; Region[r] 

enter image description here

  • Test another reg,for example some polyhedrons.
Clear[reg, r]; reg = PolyhedronData["Dodecahedron", "Region"]; r = TransformedRegion[DiscretizeRegion[reg], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; {reg, Region[r]} 

enter image description here

Edit

  • To get a more smooth surface, we use RegionPlot3D and use DisplayFunction to transform the region.
RegionPlot3D[BoundaryDiscretizeRegion@Cuboid[], DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x  (-x + y + z), y  (x - y + z), z  (x + y - z)}], PlotPoints -> 60, MaxRecursion -> 2, Boxed -> False] 

enter image description here

  • Transform the Dodecahedron.
reg = PolyhedronData["Dodecahedron", "Region"]; RegionPlot3D[ BoundaryDiscretizeRegion@reg, DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], PlotPoints -> 80, MaxRecursion -> 6, Boxed -> False] 

enter image description here

Original

  • We can DiscretizeRegion the Cuboid[] at first.
Clear[r]; r = TransformedRegion[DiscretizeRegion@Cuboid[], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; Region[r] 

enter image description here

  • Test another reg,for example some polyhedrons.
Clear[reg, r]; reg = PolyhedronData["Dodecahedron", "Region"]; r = TransformedRegion[DiscretizeRegion[reg], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; {reg, Region[r]} 

enter image description here

added 423 characters in body
Source Link
cvgmt
  • 91.7k
  • 6
  • 113
  • 194
  • To get a more smooth surface, we use RegionPlot3D and use DisplayFunction to transform the region.
RegionPlot3D[DiscretizeRegion@Cuboid[], DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], PlotPoints -> 60, MaxRecursion -> 4, Boxed -> False] 

enter image description here

  • Transform the Dodecahedron.
reg = PolyhedronData["Dodecahedron", "Region"]; RegionPlot3D[ BoundaryDiscretizeRegion@reg, DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], PlotPoints -> 80, MaxRecursion -> 6, Boxed -> False] 

enter image description here

  • We can DiscretizeRegion the Cuboid[] at first.
Clear[r]; r = TransformedRegion[DiscretizeRegion@Cuboid[], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; Region[r] 

enter image description here

  • Test another reg,for example some polyhedrons.
Clear[reg, r]; reg = PolyhedronData["Dodecahedron", "Region"]; r = TransformedRegion[DiscretizeRegion[reg], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; {reg, Region[r]} 

enter image description here

  • We can DiscretizeRegion the Cuboid[] at first.
Clear[r]; r = TransformedRegion[DiscretizeRegion@Cuboid[], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; Region[r] 

enter image description here

  • Test another reg,for example some polyhedrons.
Clear[reg, r]; reg = PolyhedronData["Dodecahedron", "Region"]; r = TransformedRegion[DiscretizeRegion[reg], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; {reg, Region[r]} 

enter image description here

  • To get a more smooth surface, we use RegionPlot3D and use DisplayFunction to transform the region.
RegionPlot3D[DiscretizeRegion@Cuboid[], DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], PlotPoints -> 60, MaxRecursion -> 4, Boxed -> False] 

enter image description here

  • Transform the Dodecahedron.
reg = PolyhedronData["Dodecahedron", "Region"]; RegionPlot3D[ BoundaryDiscretizeRegion@reg, DisplayFunction -> ReplaceAll[{x_Real, y_Real, z_Real} :> {x (-x + y + z), y (x - y + z), z (x + y - z)}], PlotPoints -> 80, MaxRecursion -> 6, Boxed -> False] 

enter image description here

  • We can DiscretizeRegion the Cuboid[] at first.
Clear[r]; r = TransformedRegion[DiscretizeRegion@Cuboid[], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; Region[r] 

enter image description here

  • Test another reg,for example some polyhedrons.
Clear[reg, r]; reg = PolyhedronData["Dodecahedron", "Region"]; r = TransformedRegion[DiscretizeRegion[reg], Function[ p, {p[[1]]*(-p[[1]] + p[[2]] + p[[3]]), p[[2]]*(p[[1]] - p[[2]] + p[[3]]), p[[3]]*(p[[1]] + p[[2]] - p[[3]])}]]; {reg, Region[r]} 

enter image description here

added 1 character in body
Source Link
cvgmt
  • 91.7k
  • 6
  • 113
  • 194
Loading
added 341 characters in body
Source Link
cvgmt
  • 91.7k
  • 6
  • 113
  • 194
Loading
Source Link
cvgmt
  • 91.7k
  • 6
  • 113
  • 194
Loading