- A starting point.
- Using
f[k] x^2 + g[k] y^2 - h[k]asMeshFunctionsin thePlot3D.
- A starting point.
- Using
f[k] x^2 + g[k] y^2 - h[k]asMeshFunctionsin thePlot3D.
- Using
f[k] x^2 + g[k] y^2 - h[k]asMeshFunctionsin thePlot3D.
- To get a surface
{x, y, z[x, y, k]}with the constraintf[k] x^2 + g[k] y^2 - h[k] == 0, we could at first get theContourPlot3Daccording the three variables{x,y,k}, then using the map{x,y,k} -> {x,y,z[x,y,k]}.
ContourPlot3D[ f[k] x^2 + g[k] y^2 - h[k] == 0 // Evaluate, {x, -3, 3}, {y, -3, 3}, {k, 0, 1}, PlotRange -> All, BoxRatios -> Automatic, DisplayFunction -> ReplaceAll[{x_Real, y_Real, k_Real} :> {x, y, z[x, y, k]}], BoxRatios -> Automatic, ColorFunction -> Function[{x, y, z}, Hue[z]], Mesh -> None] - To get a surface
{x, y, z[x, y, k]}with the constraintf[k] x^2 + g[k] y^2 - h[k] == 0, we could at first get theContourPlot3Daccording the three variables{x,y,k}, then using the map{x,y,k} -> {x,y,z[x,y,k]}.
ContourPlot3D[ f[k] x^2 + g[k] y^2 - h[k] == 0 // Evaluate, {x, -3, 3}, {y, -3, 3}, {k, 0, 1}, PlotRange -> All, BoxRatios -> Automatic, DisplayFunction -> ReplaceAll[{x_Real, y_Real, k_Real} :> {x, y, z[x, y, k]}], BoxRatios -> Automatic, ColorFunction -> Function[{x, y, z}, Hue[z]], Mesh -> None] - A starting point.
- Using
f[k] x^2 + g[k] y^2 - h[k]asMeshFunctionsin thePlot3D.
Clear["Global`*"]; f[k_] := Sin[k]; g[k_] := Cos[k]; h[k_] := k z[x_, y_, k_] := (-3 k^2)*x^2 + (2 k^2)*y^2; Manipulate[{ContourPlot[ f[k] x^2 + g[k] y^2 - h[k] == 0, {x, -3, 3}, {y, -3, 3}, PerformanceGoal -> "Quality", AspectRatio -> Automatic], Plot3D[z[x, y, k], {x, -3, 3}, {y, -3, 3}, MeshFunctions -> Function[{x, y, z}, f[k] x^2 + g[k] y^2 - h[k]], Mesh -> {{0}}, PlotStyle -> None, BoundaryStyle -> None, PlotPoints -> 60, MaxRecursion -> 2, PlotRange -> 5, ClippingStyle -> None, BoxRatios -> Automatic]}, {{k, .5}, 0, 1}] - Another way is map the
ContourPlotto 3D curve.
f[k_] := Sin[k]; g[k_] := Cos[k]; h[k_] := k z[x_, y_, k_] := (-3 k^2)*x^2 + (2 k^2)*y^2; list = Table[ ContourPlot[f[k] x^2 + g[k] y^2 - h[k] == 0, {x, -3, 3}, {y, -3, 3}, ContourStyle -> Hue@k] /. {{x_Real, y_Real} :> {x, y, z[x, y, k]}, Graphics -> Graphics3D}, {k, 0, 1, .1}]; Show[list, PlotRange -> All] - A starting point.
- Using
f[k] x^2 + g[k] y^2 - h[k]asMeshFunctionsin thePlot3D.
Clear["Global`*"]; f[k_] := Sin[k]; g[k_] := Cos[k]; h[k_] := k z[x_, y_, k_] := (-3 k^2)*x^2 + (2 k^2)*y^2; Manipulate[{ContourPlot[ f[k] x^2 + g[k] y^2 - h[k] == 0, {x, -3, 3}, {y, -3, 3}, PerformanceGoal -> "Quality", AspectRatio -> Automatic], Plot3D[z[x, y, k], {x, -3, 3}, {y, -3, 3}, MeshFunctions -> Function[{x, y, z}, f[k] x^2 + g[k] y^2 - h[k]], Mesh -> {{0}}, PlotStyle -> None, BoundaryStyle -> None, PlotPoints -> 60, MaxRecursion -> 2, PlotRange -> 5, ClippingStyle -> None, BoxRatios -> Automatic]}, {{k, .5}, 0, 1}] - A starting point.
- Using
f[k] x^2 + g[k] y^2 - h[k]asMeshFunctionsin thePlot3D.
Clear["Global`*"]; f[k_] := Sin[k]; g[k_] := Cos[k]; h[k_] := k z[x_, y_, k_] := (-3 k^2)*x^2 + (2 k^2)*y^2; Manipulate[{ContourPlot[ f[k] x^2 + g[k] y^2 - h[k] == 0, {x, -3, 3}, {y, -3, 3}, PerformanceGoal -> "Quality", AspectRatio -> Automatic], Plot3D[z[x, y, k], {x, -3, 3}, {y, -3, 3}, MeshFunctions -> Function[{x, y, z}, f[k] x^2 + g[k] y^2 - h[k]], Mesh -> {{0}}, PlotStyle -> None, BoundaryStyle -> None, PlotPoints -> 60, MaxRecursion -> 2, PlotRange -> 5, ClippingStyle -> None, BoxRatios -> Automatic]}, {{k, .5}, 0, 1}] - Another way is map the
ContourPlotto 3D curve.
f[k_] := Sin[k]; g[k_] := Cos[k]; h[k_] := k z[x_, y_, k_] := (-3 k^2)*x^2 + (2 k^2)*y^2; list = Table[ ContourPlot[f[k] x^2 + g[k] y^2 - h[k] == 0, {x, -3, 3}, {y, -3, 3}, ContourStyle -> Hue@k] /. {{x_Real, y_Real} :> {x, y, z[x, y, k]}, Graphics -> Graphics3D}, {k, 0, 1, .1}]; Show[list, PlotRange -> All] lang-mma


