Skip to main content
added 2 characters in body
Source Link
DumpsterDoofus
  • 12k
  • 1
  • 32
  • 50

Integrate the zero-order interpolation of the data:

f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Plot[f[x], {x, 0, 110}, AspectRatio -> Automatic, GridLines -> {{18, 70, 90}, None}] 

enter image description here

It can efficiently plot piecewise functions with thousands of transition points in milliseconds:

dat = {Accumulate@RandomReal[{0, 1}, 1000], RandomReal[{-1, 1}, 1000]}\[Transpose]; f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Timing@Plot[f[x], {x, list1[[1]]dat[[1, list1[[1]], dat[[-1, 1]]}] 

enter image description here

Integrate the zero-order interpolation of the data:

f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Plot[f[x], {x, 0, 110}, AspectRatio -> Automatic, GridLines -> {{18, 70, 90}, None}] 

enter image description here

It can efficiently plot piecewise functions with thousands of transition points in milliseconds:

dat = {Accumulate@RandomReal[{0, 1}, 1000], RandomReal[{-1, 1}, 1000]}\[Transpose]; f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Timing@Plot[f[x], {x, list1[[1]], list1[[-1]]}] 

enter image description here

Integrate the zero-order interpolation of the data:

f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Plot[f[x], {x, 0, 110}, AspectRatio -> Automatic, GridLines -> {{18, 70, 90}, None}] 

enter image description here

It can efficiently plot piecewise functions with thousands of transition points in milliseconds:

dat = {Accumulate@RandomReal[{0, 1}, 1000], RandomReal[{-1, 1}, 1000]}\[Transpose]; f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Timing@Plot[f[x], {x, dat[[1, 1]], dat[[-1, 1]]}] 

enter image description here

added 84 characters in body
Source Link
DumpsterDoofus
  • 12k
  • 1
  • 32
  • 50

Integrate the zero-order interpolation of the data:

f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Plot[f[x], {x, 0, 110}, AspectRatio -> Automatic, GridLines -> {{18, 70, 90}, None}] 

enter image description here

It can efficiently plot large datasetspiecewise functions with thousands of transition points in milliseconds:

dat = {Accumulate@RandomReal[{0, 1}, 1000], RandomReal[{-1, 1}, 1000]}\[Transpose]; f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Timing@Plot[f[x], {x, list1[[1]], list1[[-1]]}] 

enter image description here

Integrate the zero-order interpolation of the data:

f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Plot[f[x], {x, 0, 110}, AspectRatio -> Automatic, GridLines -> {{18, 70, 90}, None}] 

enter image description here

It can efficiently plot large datasets in milliseconds:

dat = {Accumulate@RandomReal[{0, 1}, 1000], RandomReal[{-1, 1}, 1000]}\[Transpose]; f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Timing@Plot[f[x], {x, list1[[1]], list1[[-1]]}] 

enter image description here

Integrate the zero-order interpolation of the data:

f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Plot[f[x], {x, 0, 110}, AspectRatio -> Automatic, GridLines -> {{18, 70, 90}, None}] 

enter image description here

It can efficiently plot piecewise functions with thousands of transition points in milliseconds:

dat = {Accumulate@RandomReal[{0, 1}, 1000], RandomReal[{-1, 1}, 1000]}\[Transpose]; f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Timing@Plot[f[x], {x, list1[[1]], list1[[-1]]}] 

enter image description here

added 379 characters in body
Source Link
DumpsterDoofus
  • 12k
  • 1
  • 32
  • 50

Integrate the zero-order interpolation of the data:

f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Plot[f[x], {x, 0, 110}, AspectRatio -> Automatic, GridLines -> {{18, 70, 90}, None}] 

enter image description here

It can efficiently plot large datasets in milliseconds:

dat = {Accumulate@RandomReal[{0, 1}, 1000], RandomReal[{-1, 1}, 1000]}\[Transpose]; f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Timing@Plot[f[x], {x, list1[[1]], list1[[-1]]}] 

enter image description here

Integrate the zero-order interpolation of the data:

f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Plot[f[x], {x, 0, 110}, AspectRatio -> Automatic, GridLines -> {{18, 70, 90}, None}] 

enter image description here

Integrate the zero-order interpolation of the data:

f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Plot[f[x], {x, 0, 110}, AspectRatio -> Automatic, GridLines -> {{18, 70, 90}, None}] 

enter image description here

It can efficiently plot large datasets in milliseconds:

dat = {Accumulate@RandomReal[{0, 1}, 1000], RandomReal[{-1, 1}, 1000]}\[Transpose]; f[x_] = Integrate[Interpolation[dat, InterpolationOrder -> 0][x], x]; Timing@Plot[f[x], {x, list1[[1]], list1[[-1]]}] 

enter image description here

Source Link
DumpsterDoofus
  • 12k
  • 1
  • 32
  • 50
Loading