Timeline for How to check if a 2D point is in a polygon?
Current License: CC BY-SA 3.0
7 events
| when toggle format | what | by | license | comment | |
|---|---|---|---|---|---|
| Jan 15, 2017 at 14:13 | comment | added | J. M.'s missing motivation | I'll just note that inPolyQ2 is exactly what you'll end up with if you try to vectorize Sunday's implementation of the winding number algorithm. | |
| Aug 15, 2012 at 15:14 | history | edited | Simon Woods | CC BY-SA 3.0 | code edit for better performance |
| Aug 15, 2012 at 0:22 | comment | added | Mr.Wizard | For speed I would try: Xip1 = RotateLeft@Xi; Yip1 = RotateLeft@Yi; and Total[u (1 - v) (1 - w) - (1 - u) v w] | |
| Aug 14, 2012 at 14:12 | history | edited | Simon Woods | CC BY-SA 3.0 | added 1016 characters in body |
| Aug 14, 2012 at 10:22 | comment | added | J. M.'s missing motivation | Damn, I was about to post this myself... :D | |
| Aug 14, 2012 at 10:22 | history | edited | J. M.'s missing motivation | CC BY-SA 3.0 | added 9 characters in body |
| Aug 14, 2012 at 10:18 | history | answered | Simon Woods | CC BY-SA 3.0 |