p1 = {Sin[t], Cos[t]}; p2 = {Cos[3 t], Sin[2 t]}; tAtMin = ArgMax[{EuclideanDistance[p1, p2]^2, 0 <= t <= 2 Pi}, t] tAtMax = ArgMin[{EuclideanDistance[p1, p2]^2, 0 <= t <= 2 Pi}, t] ParametricPlot[{p1, p2}, {t, 0, 2 Pi}, Epilog -> {PointSize[0.02], Red, Thick, Dashed, Through[{Point, Line}[{p1, p2} /. t -> tAtMax]], Darker@Green, Thick, Dashed, Through[{Point, Line}[{p1, p2} /. t -> tAtMin]] } ]

Here's a way to visualize the evolution of the distance as $t$ varies:
Animate[ Show[{ ParametricPlot[{p1, p2}, {t, 0, 2 Pi}, Epilog -> {PointSize[0.02], Red, Thick, Dashed, Through[{Point, Line}[{p1, p2} /. t -> tAtMax]], Darker@Green, Thick, Dashed, Through[{Point, Line}[{p1, p2} /. t -> tAtMin]] } ], Graphics[{ Thick, Gray, Dashed, PointSize[0.02], Through[{Point, Line}[{{Sin[x], Cos[x]}, {Cos[3 x], Sin[2 x]}}]] }] }], {x, 0, 2 Pi}, AnimationRate -> .05 ]
