First, let's build the function you want to define. We use your equation bound[K10P] == 0 and more general Re[bound[K10P]] == 0
Q10 = 1/2*(p0 + (m1 - m2)*(m1 + m2)/p0); Q10Min = (m1^2 + p0^2/4)/p0; u0Max = p0*(Q10 - Q10Min)/(p0 - Q10Min - Sqrt[Q10Min^2 - m1^2]); K10P = -m1^2* Q10*(1 - 2*alpha)^2/(p0^2 - 2*p0*Q10 + Q10^2*(1 - (1 - 2*alpha)^2)) + Sqrt[(-m1^2* Q10*(1 - 2*alpha)^2/(p0^2 - 2*p0*Q10 + Q10^2*(1 - (1 - 2*alpha)^2)))^2 + (m1^4*(1 - 2*alpha)^2 + m1^2*(p0 - Q10)^2)/(p0^2 - 2*p0*Q10 + Q10^2*(1 - (1 - 2*alpha)^2))]; ContourPlot[bound[K10P] == 0, {alpha, -1, 2}, {xi, 0, 1.2}, FrameLabel -> Automatic, PlotPoints -> 150] ContourPlot[Re[bound[K10P]] == 0, {alpha, -5, 5}, {xi, 0, 1.2}, FrameLabel -> Automatic, PlotPoints -> 150]

We see that the alpha function has several branches for real values of xi. This is the problem. The same can be obtained using
bound[K10P] // FullSimplify Out[]= -((25 (96 - Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)] + 1/( alpha - alpha^2)))/(12 (196 + 1/(1 - alpha) + 1/alpha - Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)] + Sqrt[2] (1 - 2 alpha) Sqrt[((1 - 2 alpha)^2 (1 + (-1 + alpha) alpha (-48 + Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)])))/((-1 + alpha)^2 alpha^2)]))) + xi
From here we immediately find (xif=xi)
xif[alpha_] := ( 25 (96 - Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)] + 1/( alpha - alpha^2)))/( 12 (196 + 1/(1 - alpha) + 1/alpha - Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)] + Sqrt[2] (1 - 2 alpha) Sqrt[((1 - 2 alpha)^2 (1 + (-1 + alpha) alpha (-48 + Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)])))/((-1 + alpha)^2 alpha^2)]))
Get the same curves
{Plot[xif[x], {x, 0, 1.2}, PlotPoints -> 200, AxesLabel -> {"alpha", "xi"}], Plot[Re[xif[x]], {x, -5, 5}, PlotPoints -> 200, AxesLabel -> {"alpha", "xi"}]}

Define the inverse function
\[Alpha] = InverseFunction[ Function[{alpha}, ( 25 (96 - Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)] + 1/( alpha - alpha^2)))/( 12 (196 + 1/(1 - alpha) + 1/alpha - Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)] + Sqrt[2] (1 - 2 alpha) Sqrt[((1 - 2 alpha)^2 (1 + (-1 + alpha) alpha (-48 + Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)])))/((-1 + alpha)^2 alpha^2)]))]]
If you evaluate the alpha function, then there will be no answer, since the system will not be able to select a branch. But you can choose the branch of the solution of the equation. Suppose we chose branch 0<alpha<1. Define the function
xif[alpha_ /; alpha > 0 && alpha < 1] := ( 25 (96 - Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)] + 1/( alpha - alpha^2)))/( 12 (196 + 1/(1 - alpha) + 1/alpha - Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)] + Sqrt[2] (1 - 2 alpha) Sqrt[((1 - 2 alpha)^2 (1 + (-1 + alpha) alpha (-48 + Sqrt[( 1 - 96 (-1 + alpha) alpha)/((-1 + alpha)^2 alpha^2)])))/((-1 + alpha)^2 alpha^2)]))
Make sure that we select the desired branch:
{Plot[xif[x], {x, 0, 1.2}, PlotPoints -> 200, AxesLabel -> {"alpha", "xi"}, PlotRange -> All], Plot[Re[xif[x]], {x, -5, 5}, PlotPoints -> 200, AxesLabel -> {"alpha", "xi"}, PlotRange -> {0, 1}]}

Define and plot the inverse function
alph = InverseFunction[xif] Plot[alph[x], {x, .3, 0.99}, PlotRange -> All, AxesLabel -> {"xi", "alpha"}]
