Given the following problem $$u_{tt}-\frac{v}{2}\cdot u_{xx}+\frac{v}{2}\cdot x^2 \cdot u(x)=0 $$ $$u(x,0)=f(x)$$ $$u_t(x,0)=g(x)=0$$ Where $ f(x)=y_0(x) $
$y_n$ are the Eigenfunctions that defined as $ y_n(x)=\exp\left(\displaystyle{\frac{-x^2}{2}}\right)H_n(x) $
By separation we assume $$u(x,t)=X(x)T(t)$$
$$\frac{T''(t)}{T(t)}=v (\frac{1}{2} \frac{X''(x)}{X(x)}-\frac{x^2}{2})=-\lambda$$
So we have
$$T''(x)=-\lambda v T(x)$$
I have found that the general solution of $T$ is
$T(x)=c_1 \cos{\sqrt{\lambda v}t}+c_2 \sin{\sqrt{\lambda v}t}$
and for $$\frac{1}{2} \frac{X''(x)}{X(x)}-\frac{x^2}{2}=-\lambda$$ which gives $$-\frac{1}{2}X''(x)+\frac{x^2}{2}X(x)=\lambda X(x)$$
the general solution of $X$ is $ X_n(x)=\exp\left(\displaystyle{\frac{-x^2}{2}}\right)H_n(x) $ given by our textbook and the eigenvalues are $\lambda_n=n+\frac{1}{2}$
So the general solution to our initial problem is $u_n(x,t)=\sum_{n=1}^{\infty} (A_n \cos{\sqrt{\lambda v}t}+B_n \sin{\sqrt{\lambda v}t}) \exp\left(\displaystyle{\frac{-x^2}{2}}\right)H_n(x)$
Using the I.C we got $$ u(x,0)=\sum_{n=1}^{\infty}A_n \exp\left(\displaystyle{\frac{-x^2}{2}}\right)H_n(x)=f(x) $$ To finish our solution, we need to solve the equation for the $A_n.$
To do this, you need to use the orthogonality property of Hermite polynomials: $$A_n=\frac{1}{\sqrt{2\pi}n!} \int_{-\infty}^\infty u(x,0) H_n(x) e^{-x^2/2} dx $$
I have solved this problem numerically with the following code
Her[n_] := HermiteH[n, x] Y[n_] := Exp[-x^2/2]*Her[n] Y[0] f[x_] = Y[0] PDE = \!\( \*SubscriptBox[\(\[PartialD]\), \(t, t\)]\(V[x, t]\)\) - 1/2 \!\( \*SubscriptBox[\(\[PartialD]\), \({x, 2}\)]\(V[x, t]\)\) + 1/2*x^2*V[x, t] == 0 BCs = {u[-21, t] == 0, u[21, t] == 0} IC = u[x, 0] == f[x] IC2 = \!\( \*SubscriptBox[\(\[PartialD]\), \(t\)]\(u[x, 0]\)\) == 0 sol = V /. First[NDSolve[{\!\( \*SubscriptBox[\(\[PartialD]\), \(t, t\)]\(V[x, t]\)\) - 1/2 \!\( \*SubscriptBox[\(\[PartialD]\), \({x, 2}\)]\(V[x, t]\)\) + 1/2*x^2*V[x, t] == 0, V[x, 0] == f[x], \!\(\*SuperscriptBox[\(V\), TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None]\)[x, 0] == 0, V[-21, t] == V[21, t] == 0}, {V}, {t, 0, 20}, {x, -21, 21}, MaxStepSize -> 100000, MaxSteps -> 100000, PrecisionGoal -> 4]] fig2 = Plot3D[sol[x, t], {t, 0, 10}, {x, -21, 21}, PlotRange -> All, ColorFunction -> (ColorData[{"DeepSeaColors", "Reverse"}][#3] &)] fig4 = Plot[sol[x, 3], {x, -21, 21}, PlotRange -> All, PlotStyle -> {{RGBColor[1, 0, 0], Dashed, Thick}}] Now I have tried to solve it analytically but the following code gave no results! Any suggestions?
Clear["Global`*"] Her[n_] := HermiteH[n, x] Y[n_] := Exp[-x^2/2]*Her[n] Y[0] f[x_] = Y[0] IC = u[x, 0] == f[x] IC2 = \!\( \*SubscriptBox[\(\[PartialD]\), \(t\)]\(u[x, 0]\)\) == 0 v = 1 \[Omega] = Sqrt[\[Lambda]*v] U[x_, t_, N_] = \!\( \*UnderoverscriptBox[\(\[Sum]\), \(n = 1\), \(N\)]\(\((a[n]*Cos[\[Omega]*t] + b[n]*Sin[\[Omega]*t])\)* HermiteH[n, x]*Exp[\(-x^2\)/2]\)\) integrand[n_] = f[x]*HermiteH[n, x]*Exp[-x^2/2]/Sqrt[2 Pi*n!] A[n_] = NIntegrate[integrand[n], {x, -Infinity, Infinity}] u[x_, t_] = U[x, t, 10] fig1 = Plot3D[u[x, t], {t, 0, 10}, {x, -21, 21}, PlotRange -> All, ColorFunction -> "BlueGreenYellow"] fig3 = Plot[u[x, 3], {x, 0, Pi}, PlotRange -> All, PlotStyle -> {{RGBColor[0, 0, 1], AbsoluteThickness[0.5`]}}] 





DEigenvalues(i.e. analytically) and they match the book. Will try to write something. $\endgroup$